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Abstract

We study the welfare costs of markups in a dynamic model with heterogeneous firms

and endogenously variable markups. Our general framework encompasses a range of

popular market structures. We provide aggregation results showing how the macro

implications of micro-level markup heterogeneity can be summarized by a few key

statistics. We calibrate our model to match US Census of Manufactures firm-level data

and find that the welfare costs of markups can be large. We decompose the costs of

markups into three channels: (i) an aggregate markup that acts like a uniform output

tax, (ii) misallocation of factors of production, and (iii) inefficient entry. Across all

specifications, we find that the aggregate markup and misallocation channels account

for the bulk of the costs of markups and that the entry channel is much less important.

Subsidizing entry is not an effective tool in our model. While an increase in compe-

tition reduces incumbents’ markups, it also reallocates market shares towards larger

incumbent firms and the net effect is that the aggregate markup changes little.
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1 Introduction

How large are the welfare costs of product market distortions? What kinds of policies can

best overcome these distortions? We answer these questions using a dynamic model with

heterogeneous firms and endogenously variable markups. In our model, markups distort

allocations through three channels. First, the aggregate markup acts like a uniform tax on

all firms. Second, there is cross-sectional markup dispersion because larger firms face less

competition and so charge higher markups. This markup dispersion gives rise to misallocation

of factors of production. Third, there is inefficient entry. Our goal is to quantify these three

channels using US micro data and to evaluate policies aimed at reducing the costs of markups.

Our focus in this paper is normative: we quantify the welfare costs of markups through

the lens of a dynamic model. But the specific endogenous markup mechanism we study is

consistent with key facts stressed in the recent empirical literature. In our model, within a

given sector, more productive firms are, in equilibrium, larger and face less elastic demand

and so charge higher markups than less productive firms. Shocks that allow more productive

firms to grow at the expense of less productive firms will be associated with an increase in

the aggregate markup and a decline in the aggregate labor share. In this sense, our model is

consistent with the reallocation of production from firms with relatively high measured labor

shares to firms with relatively low measured labor shares (Autor, Dorn, Katz, Patterson

and Van Reenen, 2020; Kehrig and Vincent, 2021) and the observation that firms with high

markups have been getting larger, driving up the aggregate markup (Baqaee and Farhi, 2020).

Our general framework encompasses a range of popular market structures including (i)

monopolistic competition with Kimball (1995) demand or symmetric translog demand as in

Feenstra (2003), and (ii) oligopolistic competition with nested-CES demand as in Atkeson and

Burstein (2008) and Edmond, Midrigan and Xu (2015). We consider settings where firms

can differ in both productivity and quality and provide aggregation results showing that

the macro implications of micro-level markup heterogeneity can be summarized by a few key

statistics. One such result is that the aggregate markup, the ‘wedge’ in aggregate employment

and investment decisions, is given by the cost-weighted average of firm-level markups.1 By

contrast, the empirical literature on the macro implications of markup heterogeneity typically

reports the sales-weighted average of firm-level markups.2 We show that the sales-weighted

average is the cost-weighted average plus a term reflecting the variance of markups. In this

sense the sales-weighted average overstates the aggregate markup by including a term that

reflects misallocation rather than the level of markups per se. Importantly, these aggregation

results hold independent of the market structure details.

1Or the sales-weighted harmonic average, as in Edmond, Midrigan and Xu (2015) and Grassi (2017).
2For example, for the US economy De Loecker, Eeckhout and Unger (2020) estimate a sharply increasing

sales-weighted average markup rising from about 1.2 in 1980 to about 1.6 in 2016. By contrast the cost-
weighted average is lower and has risen by less, from about 1.1 to about 1.25. The difference reflects the
increase in cross-sectional markup dispersion. We discuss these measures at length in Appendix A.
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Regardless of market structure, we find that markups distort allocations through the

three channels mentioned at the outset: the aggregate markup, misallocation due to markup

dispersion, and inefficient entry. We show that the efficient allocation can be implemented by

a specific nonlinear schedule of direct subsidies with two components, a uniform component

that subsidizes all firms and that can be used to eliminate the aggregate markup, and a

size-dependent component that jointly eliminates misallocation and the entry distortion.

We quantify the welfare costs of markups by asking how much the representative consumer

would benefit if the economy transitioned from an initial steady state with markup distortions

to the efficient steady state. Because eliminating the markup distortions entails a large

increase in the capital stock, taking into account the cost of building up the capital stock

is critical to correctly assess the welfare gains from such policies. We calibrate the initial

steady state using US Census of Manufactures firm-level data from 1972 to 2012 to match

levels of sales concentration and the firm-level relationship between markups and market

shares observed in 6-digit NAICS sectors, controlling for firm fixed effects and 6-digit NAICS

sector-year effects to control for other persistent sources of firm and sector heterogeneity.

Our calibration strategy makes use of the fact that, though the precise mapping depends

on market structure, all versions of our model imply a simple firm-level relationship between

markups and market shares. We use the estimated parameter values from this relationship to

calculate firm-level markups in the model and calculate the welfare costs of these markups.

That is, we do not feed into the model separately estimated firm-level markups. We prefer

to use the markups implied by our model for two reasons. First, in the Census data we

only observe firm-level revenues, not prices and quantities separately. Absent firm-level

quantities we cannot disentangle markup levels from output elasticities in production (see

Bond, Hashemi, Kaplan and Zoch, 2021; De Ridder, Grassi and Morzenti, 2022, for extensive

discussion). Second, we would be cautious to interpret such estimates as ‘true markups’ even

if output elasticities were accurately estimated, since such estimates potentially confound the

true markup with other distortionary ‘wedges’ — e.g., implicit or explicit input or revenue

taxes, factor-adjustment costs, or price rigidities, etc. For these reasons the Census data

we use leads a relatively wide range of empirically plausible markup levels. Given this, we

report the welfare costs of markups for a wide range of values for the aggregate markup,

recalibrating the model each time.

We find that the welfare costs of markups can be large. It turns out that the welfare costs

are not just increasing in the level of the aggregate markup we target, they are increasing

and convex. Because of this convexity, for some parameterizations of the model we find very

large welfare costs of markups, as high as 50% in consumption-equivalent terms. Overall we

also find that the costs tend to be lower if we assume monopolistic competition but are much

higher if we assume oligopolistic competition.

We then turn to quantifying the relative importance of the three channels by which
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markups reduce welfare in our model. Across all specifications, we find that the aggregate

markup and misallocation channels account for the bulk of the costs of markups and that the

entry channel is much less important. That said, the relative importance of the aggregate

markup and misallocation channels vary depending on the market structure and target for

the aggregate markup. For example, the Kimball specification implies that the share of the

total costs accounted for by the aggregate markup increases from 1/2 to 3/4 as we increase

the aggregate markup from 1.05 to 1.35. The balance of the costs are almost entirely due to

misallocation, the losses from the entry distortion are negligible.

Although the losses from misallocation in our model can be sizeable, accounting for value-

added TFP losses of around 2% to 6%, depending on the specification, they are small relative

to standard estimates in the literature (Restuccia and Rogerson, 2008; Hsieh and Klenow,

2009). This is because we measure misallocation using the dispersion in marginal revenue

products implied by the endogenous markup distribution in our model, i.e., that relatively

small share of the dispersion in marginal revenue products systematically related to market

shares. We do not attribute all variation in observed marginal revenue products to markups.

In representative firm models, subsidizing entry (or reducing barriers to entry) so as to

increase competition is a powerful tool for reducing the aggregate markup and hence reducing

the costs of markups (Bilbiie, Ghironi and Melitz, 2008, 2019). By contrast we find that,

with heterogeneous firms, subsidizing entry is not a powerful tool. For all our specifications,

we find that even large increases in the number of firms have small effects on the aggregate

markup.3 To understand this, recall that the aggregate markup is a cost-weighted average

of firm-level markups. An increase in the number of firms has two effects on this weighted

average. The direct effect is a reduction in the markup of each firm, due to a reduction in

each firm’s market share. But there is also an important compositional effect: small firms

face more elastic demand and are more vulnerable to competition from entrants; large firms

face less elastic demand and are less vulnerable. So when there is an increase in the number

of firms, small, low markup firms contract by more than large, high markup firms and the

resulting reallocation keeps the aggregate markup almost unchanged, despite the reduction

in firm-level markups. In all our specifications, this offsetting compositional effect is almost

as large as the direct effect so overall the aggregate markup falls by a small amount.4

The different specifications we consider each have their own strengths and weaknesses.

The model with Kimball demand is more flexible than the model with symmetric translog

demand and is better able to match our calibration targets. But the model with translog

3There are however standard love-of-variety gains from increasing the number of firms.
4These offsetting direct and compositional effects are reminiscent of results in the trade literature, e.g.,

Bernard, Eaton, Jensen and Kortum (2003) and especially Arkolakis, Costinot, Donaldson and Rodŕıguez-
Clare (2019). We derive analogous results for Kimball and translog demand but unlike in their analysis, we
do not assume from the outset that the ‘choke price’ in either demand system is binding, since this is an
equilibrium outcome. For the translog case, we also provide closed-form solutions for the aggregate markup
and the cutoff productivity that pins down the cross-sectional distributions of markups and market shares.
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demand is more tractable than Kimball demand and leads to sharp analytic results. Both

monopolistic competition models are simple computationally. The oligopoly model is compu-

tationally challenging but has richer empirical content. Though our aggregation results hold

regardless of the assumed market structure, the oligopoly model makes a number of predic-

tions that differ from the monopolistic competition models. First, we find larger amounts of

markup dispersion and hence larger losses from misallocation in the oligopoly model than in

either of the monopolistic competition models. Second, while the monopolistic competition

models predict that there are too few firms in equilibrium, the oligopoly model predicts that

there are too many. But since the entry margin is not a quantitatively important source of

losses in any specification, this qualitative difference is not important.

Existing results on costs of markups. The starting point for discussion of the welfare

costs of markups is Dixit and Stiglitz (1977), though the literature goes back to Lerner

(1934). Recent work such as Zhelobodko, Kokovin, Parenti and Thisse (2012), Dhingra and

Morrow (2019) and Behrens, Mion, Murata and Suedekum (2020) studies variable markups in

static models with heterogeneous firms. By contrast, our model is dynamic. Like us, Bilbiie,

Ghironi and Melitz (2008, 2019) study a dynamic model and quantify the costs of markups

but they assume a representative firm. We find, however, that firm heterogeneity plays a

crucial role in understanding the costs of markups. In our model, markups compensate firms

for sunk investments in the creation of a new variety. To the extent that there are positive

spillovers from the creation of new varieties, as in the endogenous growth literature, our

results may overstate the costs of markups. Atkeson and Burstein (2010, 2019) provide a

welfare analysis of innovation policies in firm dynamics models but abstract from variable

markups. Peters (2020) studies innovation, firm dynamics, and variable markups but does

not evaluate the welfare costs of markups.

Markups and misallocation. In our model markups increase with firm size. This is one

form of misallocation in the sense of Restuccia and Rogerson (2008), and Hsieh and Klenow

(2009). We find that the gross output productivity losses from this form of misallocation

are on the order of 1 to 3%, with value-added productivity losses about double that, on the

order of 2 to 6%, reflecting a materials share in gross output just under one-half. We view

these numbers as an upper bound on the the gains from size-dependent subsidies since we

attribute all of the systematic relationship between firm revenue productivity and firm size

to market power, and not to, say, overhead costs as in Autor, Dorn, Katz, Patterson and

Van Reenen (2020) and Bartelsman, Haltiwanger and Scarpetta (2013). Because of this we

are likely somewhat overstating the true relationship between markups and firm size and

overstating the losses from this form of misallocation.

It is important to recognize that we abstract from all other sources of markup variation

that may cause misallocation. Firms may operate in different locations or sell different prod-
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ucts in different sectors and charge different markups depending on the amount of competition

they face in those different markets.5 Policies that condition on location or other relevant

market details may be able to address these forms of misallocation too. But implement-

ing finely-tuned policies that condition on details of market conditions location-by-location

seems challenging in practice. Given this, we restrict our attention to size-dependent markup

variation and we find that the value-added productivity gains from eliminating misallocation

due to size-dependent markup variation are likely no more than 2 to 6%.

In related work, Baqaee and Farhi (2020) calculate that the value-added aggregate pro-

ductivity gains from eliminating markups are about 20%, much larger than in our model.

They find much larger effects because they feed into their calculation all the variation in

estimated markups (as in De Loecker, Eeckhout and Unger, 2020; Gutiérrez and Phillippon,

2017b) whereas we feed in that component of markups that systematically varies with firm

market shares. Because the estimated markups they use are more dispersed than the markups

from our model, they find larger effects of markup dispersion on aggregate productivity.

2 Model

There is a representative consumer with preferences over final consumption and labor supply

and who owns all the firms. The final good is produced by perfectly competitive firms

using inputs from many sectors. Within each sector there are heterogeneous imperfectly

competitive firms producing differentiated products using capital, labor and materials. Firms

enter by paying a sunk cost in units of labor and then obtain a one-time productivity draw

in a randomly allocated sector. Exit is random and there is no aggregate uncertainty. We

focus on characterizing the steady state and transitional dynamics after a policy change.

2.1 Setup

A key feature of our analysis is a set of aggregation results that hold regardless of the details

of market structure within each sector. We proceed in two steps, first explaining the basic

setup and aggregate outcomes that hold independent of market structure within each sector

and then turning to the remaining details where market structure matters.

Representative consumer. The representative consumer maximizes

∞∑
t=0

βt
(

logCt − ψ
L1+ν
t

1 + ν

)
(1)

5Rossi-Hansberg, Sarte and Trachter (2020) show that while aggregate US product-market concentration
has been rising since the early 1990s, concentration in geographically-specific local markets has been falling.
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subject to the budget constraint

Ct + It = WtLt +RtKt + Πt (2)

where Ct denotes consumption of the numeraire final good, It = Kt+1 − (1 − δ)Kt denotes

investment, Kt denotes physical capital, Lt denotes labor supply, Wt the real wage, Rt the

rental rate of capital, and Πt denotes aggregate profits net of the cost of creating new firms.

The representative consumer’s labor supply satisfies

ψCtL
ν
t = Wt (3)

and their investment choice satisfies

1 = β
Ct
Ct+1

(Rt+1 + 1− δ) (4)

Since firms are owned by the representative consumer, they use the one-period discount factor

βCt/Ct+1 to discount future profit flows.

Final good producers. Let Yt denote gross output of the final good. This can be used for

consumption Ct, investment It, or as materials Xt, so that

Ct + It +Xt = Yt (5)

The use of the final good as materials gives the model a simple ‘roundabout’ production

structure, as in Jones (2011) and Baqaee and Farhi (2020).

The final good Yt is produced by perfectly competitive firms using inputs yt(s) from a

continuum of sectors

Yt =

(∫ 1

0

yt(s)
η−1
η ds

) η
η−1

(6)

where η > 1 is the elasticity of substitution across sectors s ∈ [0, 1]. Let pt(s) denote the

price index for sector s. Since the final good is the numeraire, these satisfy

1 =

(∫ 1

0

pt(s)
1−η ds

) 1
1−η

(7)

Within sectors. Within each sector there are imperfectly competitive firms producing

differentiated goods. As discussed extensively below, we consider two market structures:

monopolistic competition with a continuum of firms i ∈ [0, nt(s)] per sector, or oligopolistic

competition with a finite number of firms i = 1, . . . , nt(s) per sector. Except where noted,

our results below hold for both cases.
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Technology. Firms enter by paying a sunk cost κ in units of labor and then obtain a

one-time productivity draw zi(s) ∼ G(z) in a random sector s. A firm’s gross output is then

yit(s) = zi(s)
(
φ

1
θ vit(s)

θ−1
θ + (1− φ)

1
θ xit(s)

θ−1
θ

) θ
θ−1

(8)

where vit(s) is the firm’s value-added, a composite of physical capital and labor

vit = kit(s)
αlit(s)

1−α (9)

We impose a unit elasticity of substitution between capital and labor. The elasticity of

substitution between value-added vit(s) and materials xit(s) is given by θ.

Input demands. Taking input prices as given, cost minimization gives the input demands

Rtkit(s) = α

{(Rt

α

)α( Wt

1− α

)1−α
}
vit(s) (10)

Wtlit(s) = (1− α)

{(Rt

α

)α( Wt

1− α

)1−α
}
vit(s) (11)

where the term in braces on the right is the price index for the value-added composite. In

turn, demand for the value-added composite and demand for materials are given by

vit(s) = φ

{(Rt
α

)α(
Wt

1−α

)1−α

Ωt

}−θ
yit(s)

zi(s)
(12)

and

xit(s) = (1− φ)

{
1

Ωt

}−θ
yit(s)

zi(s)
(13)

where Ωt is the input price index dual to the technologies in (8) and (9), namely

Ωt =

(
φ

{(Rt

α

)α( Wt

1− α

)1−α
}1−θ

+ (1− φ)

) 1
1−θ

(14)

where materials have a relative price of 1 since they are in units of the numeraire. Notice

that the capital/labor and value-added/materials ratios are common to all firms.

Marginal cost. These factor demands imply that a firm’s marginal cost is given by

Ωt

zi(s)
(15)
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Profits and markups. A firm’s profits are then given by

πit(s) = pit(s)yit(s)−
Ωt

zi(s)
yit(s) (16)

Firms maximize profits subject to the demand system they face, which depends on the

market structure details. At the optimum a firm’s price can be written as a markup µit(s)

over marginal cost

pit(s) = µit(s)
Ωt

zi(s)
, µit(s) =

σit(s)

σit(s)− 1
(17)

where σit(s) denotes the (endogenous) demand elasticity facing firm i. Different demand

systems imply different determinants of σit(s) as discussed below. Profits can then be written

in terms of markups and sales

πit(s) =

(
1− 1

µit(s)

)
pit(s)yit(s) (18)

Labor shares. Combining a firm’s labor demand from (11)-(12) with markup pricing (17),

a firm’s labor share can be written

Wtlit(s)

pit(s)yit(s)
=

(1− α)ζt
µit(s)

(19)

where ζt denotes the elasticity of output with respect to value-added

ζt :=

φ
1−φ

{(
Rt
α

)α(
Wt

1−α

)1−α
}1−θ

1 + φ
1−φ

{(
Rt
α

)α(
Wt

1−α

)1−α
}1−θ (20)

This elasticity is common to all firms but in general varies over time. All cross-sectional

variation in labor shares is due to cross-sectional variation in markups µit(s).

We next briefly outline how the distribution of markups µit(s) affects productivity within

and across sectors. We focus on aggregation results that obtain independent of within-sector

market structure.

Aggregate productivity. Let kt(s), lt(s), and xt(s) denote sector-level capital, labor and

materials. These are the integrals (or sums) of kit(s), lit(s) and xit(s) over i within s. We

can then write the gross output of sector s as

yt(s) = zt(s)F (kt(s), lt(s), xt(s) ) (21)

where

F (k, l, x) =

(
φ

1
θ

(
kαl1−α

) θ−1
θ

+ (1− φ)
1
θ x

θ−1
θ

) θ
θ−1

(22)
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and where sector-level productivity satisfies

zt(s) =

(∫ nt(s)

0

qit(s)

zi(s)
di

)−1

(23)

where qit(s) := yit(s)/yt(s) denotes the relative size of firm i in sector s. The only difference

having a finite number of firms makes is that the integral should be replaced by a finite sum.

Likewise, let Kt, L̃t, and Xt denote aggregate capital, labor used in production, and mate-

rials. These are the integrals of kt(s), lt(s) and xt(s) over s ∈ [0, 1]. We then have aggregate

gross output Yt = ZtF (Kt, L̃t, Xt) where aggregate productivity is given in the same way as

sector productivity

Zt =

(∫ 1

0

qt(s)

zt(s)
ds

)−1

(24)

where qt(s) := yt(s)/Yt denotes the relative size of sector s.

Thus sector-level productivity zt(s) is a firm-size-weighted harmonic average of firm-level

productivity zi(s) and aggregate productivity Zt is a sector-size-weighted harmonic average

of sector-level productivity. Sector-level productivity and aggregate productivity are affected

by markups µit(s) through the effects of markups on the distribution of firm-size qit(s) within

sectors and the distribution of sector-size qt(s) across sectors.

Aggregate markup. Let µt(s) denote the sector-level markup, implicitly defined by the

sector-level labor share
Wtlt(s)

pt(s)yt(s)
=

(1− α)ζt
µt(s)

(25)

Combining the sector-level labor share with its firm-level counterpart (19) we can write the

sales-share of firm i in sector s as

pit(s)yit(s)

pt(s)yt(s)
=
µit(s)

µt(s)
× lit(s)

lt(s)
(26)

Integrating both sides, the sector-level markup can be written either as an employment-

weighted arithmetic average or a sales-weighted harmonic average of firm-level markups, as

in Edmond, Midrigan and Xu (2015),

µt(s) =

∫ nt(s)

0

µit(s)
lit(s)

lt(s)
di =

(∫ nt(s)

0

1

µit(s)

pit(s)yit(s)

pt(s)yt(s)
di

)−1

(27)

where, again, the only difference having a finite number of firms makes is that the integral

should be replaced by a finite sum. From either of these and the expression for sector-level
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productivity zt(s) we see that the sector-level markup satisfies pt(s) = µt(s)Ωt/zt(s), i.e., the

sector price index can be expressed as the sector-level markup over marginal cost.

Likewise, letMt denote the aggregate, economy-wide markup. Following the same steps,

this can be written either as an employment-weighted arithmetic average or a sales-weighted

harmonic average of sector-level markups

Mt =

∫ 1

0

µt(s)
lt(s)

L̃t
ds =

(∫ 1

0

1

µt(s)

pt(s)yt(s)

Yt
ds

)−1

(28)

The aggregate markup satisfies 1 = MtΩt/Zt, i.e., the aggregate price level (normalized to

one) is the aggregate markup over aggregate marginal cost. We discuss these and related

measures of average markups in more detail in Appendix A.

Markup dispersion and productivity. To see how markup dispersion affects produc-

tivity, observe from (6) that sector size qt(s) = yt(s)/Yt satisfies qt(s) = pt(s)
−η and since

pt(s) = µt(s)Ωt/zt(s) and 1 =MtΩt/Zt we can write

qt(s) =
(µt(s)
Mt

Zt
zt(s)

)−η
(29)

Plugging this into our expressions for aggregate productivity and solving for Zt we obtain

Zt =

(∫ 1

0

(µt(s)
Mt

)−η
zt(s)

η−1 ds

) 1
η−1

(30)

In turn, sector-productivity zt(s) and markups µt(s) depend on the distribution of firm-level

productivity zi(s) and markups µit(s) within sector s — but the details of this layer of

aggregation do depend on the within-sector market structure.

2.2 Role of market structure

In this section we explain how the details of within-sector market structure matter. First, the

market structure matters for determining the relative size distribution qit(s) = yit(s)/yt(s)

within each sector s. That said, taking nt(s) as given, we can cover a range of popular

specifications in a unified way, as explained below. Second, and more substantively, the

market structure matters for the entry problem that determines nt(s). The entry problem is

simple with monopolistic competition but more involved with oligopolistic competition.6

6In our model with oligopoly, the potential number of firms per sector nt(s) is endogenous. This problem
is challenging because potential entrants anticipate their impact on a sector, and the distribution of sectoral
configurations is a very high-dimensional object. By contrast in Atkeson and Burstein (2008), Edmond,
Midrigan and Xu (2015), and De Loecker, Eeckhout and Mongey (2021), the potential number of firms is
static and exogenous, with firms simply deciding whether to operate or not.
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Relative size distribution. Taking nt(s) as given, the relative size distribution qit(s)

within sector s is pinned down by the static markup-pricing condition (17). To cover alter-

native specifications in a unified way, we write this as

f(q) =
σ(q)

σ(q)− 1

At(s)

zi(s)
, At(s) :=

Ωt

pt(s)dt(s)
(31)

where the function f(q) is proportional to the inverse demand curve, σ(q) is the associated

demand elasticity, with markup µ(q) = σ(q)/(σ(q) − 1), and where pt(s) is the price index

for sector s and dt(s) is a demand index that depends on the market structure.7 Let q(z ;A)

denote the solution to p(q) = µ(q)A/z for arbitrary A > 0. We then pick the specific value

of A that satisfies the within-sector aggregator. For example:

(i) Monopolistic competition with Kimball demand. Let sector s consist of a

mass nt(s) > 0 firms and let sector output be given implicitly by the Kimball aggregator∫ nt(s)

0

Υ
(yit(s)
yt(s)

)
di = 1 (32)

where Υ(q) is strictly increasing and strictly concave. For this specification inverse

demand f(q) and the demand elasticity σ(q) are given by

f(q) = Υ′(q) and σ(q) = − Υ′(q)

Υ′′(q)q
(33)

The associated demand index dt(s) is given by

dt(s) =

(∫ nt(s)

0

Υ′(qit(s))qit(s) di

)−1

(34)

The scalar At(s) := Ωt/pt(s)dt(s) is then pinned down by satisfying the Kimball aggre-

gator and thus depends on the mass of firms nt(s).

(ii) Oligopolistic competition with CES demand. Let sector s consist of a finite

nt(s) ∈ N firms and let sector output be given by the CES aggregator

nt(s)∑
i=1

Υ
(yit(s)
yt(s)

)
= 1, Υ(q) = q

γ−1
γ (35)

where γ > η > 1 denotes the elasticity of substitution within sector s. Relative to

the Kimball specification we have a finite number of firms, hence genuine strategic

7In this notation, a firm of size qit(s) has price pit(s) = f(qit(s))× pt(s)dt(s).
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interactions, but restrict the kernel of the aggregator Υ(q) to be a power function. For

this specification inverse demand f(q) is given by

f(q) = Υ′(q) =
γ − 1

γ
q−

1
γ (36)

while the demand index is simply

dt(s) =

nt(s)∑
i=1

Υ′(qit(s))qit(s)

−1

=
γ

γ − 1
(37)

Depending on whether competition is in quantities or prices, the demand elasticity

facing a firm of size q is given by

σ(q) =


(

1

η
q
γ−1
γ +

1

γ
(1− q

γ−1
γ )

)−1

[Cournot competition]

ηq
γ−1
γ + γ(1− q

γ−1
γ ) [Bertrand competition]

(38)

where q
γ−1
γ is the sales share of a firm of size q, equal to the kernel of the aggregator

Υ(q) in the CES case but not in general. The scalar At(s) := Ωt/pt(s)dt(s) is pinned

down by satisfying the CES aggregator and thus depends on nt(s).

With the relative size distribution qit(s) solved for in this way, we then know the distri-

bution of markups µit(s) = µ(qit(s)) and hence can compute sector-level productivity zt(s)

and markups µt(s) and then aggregate productivity Zt and the aggregate markup Mt.

Entry and exit. Firms enter by paying a sunk cost κ in units of labor and then obtain

a one-time productivity draw zi(s) ∼ G(z) in a randomly allocated sector s ∈ [0, 1]. Let

Nt =
∫ 1

0
nt(s) ds denote the aggregate mass of firms and let Mt =

∫ 1

0
mt(s) ds denote the

aggregate mass of entrants. With a continuum of sectors, entry per sector mt(s) is IID

Poisson with rate parameter Mt.
8 Firms operate in their sector, obtaining a stream of profits

πit(s), until they are hit with an IID exit shock, which happens with probability ϕ per period.

For each sector s we then have

nt+1(s) = (1− ϕ)nt(s) +mt(s) (39)

and hence the aggregate mass of firms evolves according to Nt+1 = (1− ϕ)Nt +Mt.

8With a finite number of sectors S, entry per sector mt(s) would be IID Binomial with number of trials
MtS and success per trial 1/S. Taking S →∞ this converges to a Poisson with rate parameter Mt.
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Free entry condition. Now consider the decision problem of a potential entrant. In all

versions of our model, entry occurs to the point at which ex ante expected discounted profits

are offset by the sunk cost

κWt ≥ β
∞∑
j=1

(β(1− ϕ))j−1 Ct
Ct+j

∫ 1

0

π̄t+j(s) ds (40)

with strict equality whenever Mt > 0 and where π̄t(s) denotes expected profits conditional

on operating in sector s. Where these market structures differ is in how these expected

profits are calculated. Under monopolistic competition, with a continuum [0, nt(s)] of firms

per sector, the entry of any individual firm i has no effect on sector-level variables. But under

oligopolistic competition, with a finite nt(s) ∈ N firms per sector, the entry of a new firm has

non-negligible effects on post-entry sector-level variables. Specifically:

(i) Monopolistic competition. Let πt(zi, s) := πit(s) denote the ex post profits of an

individual firm with productivity draw zi in sector s. In the monopolistic competition

case, the expected profits conditional on operating in sector s are equal to the average

profits of the incumbent firms in that sector

π̄t(s) =

∫
πt(zi, s) dG(zi) (41)

(ii) Oligopolistic competition. Let z(s) denote a sector-specific vector

z(s) = ( z1(s) , z2(s) , . . . , znt(s)(s) ) (42)

of nt(s) independent draws from G(z). Let πt(zi, z(s)) denote the ex post profits of an

individual firm with productivity zi in a sector with nt(s) other firms with productivities

z(s). The free-entry condition is again given by equation (40) but now the expected

profits conditional on operating in sector s are given by

π̄t(s) =

∫∫
πt(zi, z(s)) dGnt(s)(z(s)) dG(zi) (43)

where Gnt(s)(z(s)) = G(z1)×G(z2)×· · ·×G(znt(s)(s)) denotes the joint distribution of

the vector z(s). In the oligopolistic competition case, the expected profits from entering

sector s are no longer equal to the average profits of those that do operate in sector

s. There are two reasons for this. First, even if firms were identical, an entrant of

non-negligible size would reduce the market shares of incumbents, tending to decrease

expected profits. Second, sectors are heterogeneous, even two sectors with the same

nt(s) will have different samples z(s), and, given this heterogeneity, Jensen’s inequality

can push expected profits above average profits.
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2.3 Equilibrium

Given an initial mass of firms n0(s) per sector and an aggregate capital stock K0, an equilib-

rium is (i) a sequence of firm prices pit(s) and allocations yit(s), kit(s), lit(s), xit(s) and (ii)

aggregate gross output Yt, consumption Ct, investment It, materials Xt, labor Lt, wage rate

Wt, rental rate Rt, and mass of entrants Mt such that firms and consumers optimize and the

labor, capital and goods markets all clear. In particular

Lt =

∫∫
lit(s) di ds+ κMt (44)

Kt =

∫∫
kit(s) di ds (45)

Xt =

∫∫
xit(s) di ds (46)

(or the equivalent finite sums over i in the case of oligopolistic competition). Note that κMt

denotes labor used in the entry of new firms.

Solving the model. We discuss the solution method in Appendix D. The key to solv-

ing the model is to recognize that aggregate markups Mt, aggregate productivity Zt and

aggregate expected profits Π̄t :=
∫ 1

0
π̄t(s) ds, are given by time-invariant functions of the

aggregate mass of firms Nt, independent of all other aggregate variables, say Mt =M(Nt),

Zt = Z(Nt), and Π̄t = Π(Nt). These functions summarize all the implications of market

structure for aggregate outcomes. We solve the model by interpolating these functions and

then use the remaining conditions, i.e., the production functions, input choices, optimality

conditions of the representative consumer, and our aggregation results to simultaneously

determine Yt, Ct, It, Xt, Lt,Wt, Rt,Mt given the state variables Nt and Kt.

3 Efficient allocation

In this section we derive the efficient allocation in our economy by considering the problem

of a benevolent planner who faces the same technological and resource constraints as in

the decentralized economy. Comparing the efficient allocation chosen by the planner to the

decentralized allocation reveals three channels through which markups distort outcomes in

the decentralized economy: (i) the aggregate markup acts like a uniform output tax, (ii)

markup dispersion gives rise to misallocation of factors of production, and (iii) markups

distort the entry margin.

3.1 Planner’s problem

The planner chooses how many varieties to create, how to allocate inputs, consumption,

investment, and employment so as to maximize the representative consumer’s utility taking
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as given the resource constraints for capital, labor and goods and the production functions

for individual varieties. To facilitate comparisons with the decentralized equilibrium, the

planner cannot direct the creation of new varieties towards specific sectors. We use asterisks

to denote variables in the planner’s problem.

The planner’s problem has two parts: (i) a static allocation problem that determines

aggregate productivity, and (ii) a dynamic problem that determines aggregate investment

in new varieties, aggregate investment in physical capital, and aggregate employment. The

link between the two parts is that the aggregate productivity solving the static allocation

problem is a function of the stock of varieties, Z∗t = Z(N∗t ), which the planner internalizes

when choosing how many varieties to create.

Dynamic problem. Starting with the dynamic problem, just as in the decentralized prob-

lem, we can use the resource constraints for capital, labor and goods and the production

functions for individual varieties to derive the aggregate production function (22). We can

then write the the planner’s problem as maximizing

∞∑
t=0

βt
(

logC∗t − ψ
(
L̃∗t + κ(N∗t+1 − (1− ϕ)N∗t )

)1+ν

1 + ν

)
(47)

subject to the resource constraint for goods,

C∗t +K∗t+1 +X∗t = Z(N∗t )F (K∗t , L̃
∗
t , X

∗
t ) + (1− δ)K∗t (48)

taking as given the function Z(N∗t ) implied by the static allocation problem. The initial

conditions for this problem are the mass of varieties N0 and capital stock K0.

The planner’s optimality conditions for consumption, investment, and employment are

standard. The shadow wage is equated to the marginal product of labor

ψC∗t L
∗ ν
t = Z∗t F

∗
L,t (49)

while the marginal product of capital satisfies

1 = β
C∗t
C∗t+1

(
Z∗t+1F

∗
K,t+1 + 1− δ

)
(50)

and the marginal product of materials is simply Z∗t F
∗
X,t = 1. Comparing these conditions with

their decentralized counterparts, we see that the aggregate markup Mt acts like a uniform

output tax, reducing the overall scale of production and hence reducing the use of all inputs

relative to the planner’s problem.
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Planner’s choice of varieties. Now consider the planner’s choice of varieties N∗t+1. Let-

ting W ∗
t = ψC∗t L

∗ ν
t denote the shadow wage, we can write the first order condition

κW ∗
t = β

C∗t
C∗t+1

(1− ϕ)κW ∗
t+1 + β

C∗t
C∗t+1

( dZ∗t+1

dN∗t+1

N∗t+1

Z∗t+1

) Y ∗t+1

N∗t+1

(51)

Iterating forward this gives

κW ∗
t = β

∞∑
j=1

(β(1− ϕ))j−1 C∗t
C∗t+j

( dZ∗t+j
dN∗t+j

N∗t+j
Z∗t+j

) Y ∗t+j
N∗t+j

(52)

This is the planner’s counterpart to the free-entry condition in the decentralized problem.

In the decentralized problem, a firm’s incentive to enter is given by its expected discounted

profits, which depend on its markup and sales. By contrast, the planner’s incentive to create

new varieties depends on the elasticity of aggregate productivity with respect to the mass of

firms — and this depends on the solution to the static allocation problem.

Static allocation problem. Now consider the problem of maximizing aggregate produc-

tivity Z∗t taking as given nt(s). The allocation of activity across sectors q∗t (s) = y∗t (s)/Y
∗
t

is given by q∗t (s) = (z∗t (s)/Z
∗
t )η so that in terms of sector-level productivity, aggregate pro-

ductivity is Z∗t = (
∫ 1

0
z∗t (s)

η−1 ds)1/(η−1), i.e., as in (30) but with no dispersion in sector-level

markups. In turn, the allocation of activity within sectors q∗it(s) = y∗it(s)/y
∗
t (s) is given by

Υ′(q∗it(s))d
∗
t (s) =

z∗t (s)

zi(s)
(53)

where d∗t (s) is the planner’s demand index, the counterpart of (34) or (37). In other words, at

the optimum the planner’s shadow value of a variety is simply the planner’s marginal cost of

producing it. This optimality condition holds for both our monopolistic competition model

with Kimball demand and our oligopolistic competition model with CES demand. As in the

decentralized problem, the scalar z∗t (s)/d
∗
t (s) is pinned down by satisfying the within-sector

aggregator. In our oligopolistic competition model with CES demand this gives sector-level

productivity z∗t (s) = (
∑nt(s)

i=1 z∗it(s)
γ−1)1/(γ−1) with constant demand index d∗t (s) = γ

γ−1
.

There is misallocation in the sense of Hsieh and Klenow (2009) whenever there is variation

in marginal revenue products across firms, i.e., when the equilibrium qit(s) does not coincide

with the planner’s q∗it(s). This happens whenever markups µit(s) vary across firms.

Value of an additional variety. Now consider the value to the planner of an additional

variety. Abstracting from any integer constraints on nt(s), an application of the envelope

theorem gives
dZ∗t
dnt(s)

nt(s)

Z∗t
=
(
d∗t (s)− 1

)
q∗t (s)

Z∗t
z∗t (s)

(54)
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To interpret this condition, we use the planner’s demand index to write

d∗t (s)− 1 =

∫ nt(s)

0

(
ε∗it(s)− 1

)
p∗it(s)q

∗
it(s) di (55)

(or the equivalent finite sum in the case of oligopolistic competition), where we define

ε∗it(s) :=
Υ(q∗it(s))

Υ′(q∗it(s))q
∗
it(s)

, and p∗it(s) := Υ′(q∗it(s))d
∗
t (s) (56)

The term ε∗it(s) is the inverse elasticity of the within-sector aggregator Υ(q) evaluated at the

planner’s allocation for a particular variety q∗it(s). The term p∗it(s) is the social value of an

additional unit of that variety, i.e., the planner’s counterpart to the market price.

Comparing the free-entry condition in the decentralized equilibrium to the planner’s entry

condition, we recover an important insight of Bilbiie, Ghironi and Melitz (2008, 2019), Zh-

elobodko, Kokovin, Parenti and Thisse (2012) and Dhingra and Morrow (2019), namely that

the planner’s incentives to create new varieties are determined by the inverse elasticity ε∗it(s)

of the aggregator while the incentives for new firms to enter are determined by their markups

µit(s). Whether there is too much or too little entry compared to the planner’s allocation is

in general ambiguous and depends on precise details of the parameterization.

To summarize, variable markups distort outcomes in the decentralized economy through

three channels: (i) the aggregate markup Mt acts like a uniform output tax, (ii) markup

dispersion µit(s) gives rise to misallocation of factors of production, and (iii) markups distort

the entry margin.

4 Quantifying the model

In this section we outline our parameterization and calibration strategy and our model’s

implications for the cross-sectional distribution of markups. We then calculate the aggregate

productivity losses due to misallocation.

4.1 Benchmark parameterization

Kimball demand. To this point we have stressed aggregation results that hold regardless

of the details of market structure within each sector. But to quantify the model we need

to take a stand on demand and market structure. For our benchmark model we assume

monopolistic competition with Kimball demand, as in (32) above. In particular, we assume

the Kimball aggregator has the functional form introduced by Klenow and Willis (2016).
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This specification implies that inverse demand curves are given by9

Υ′(q) =
σ̄ − 1

σ̄
exp

(
1− q ε/σ̄

ε

)
, σ̄ > 1 (57)

which in turn implies that the demand elasticity σ(q) is log-linear in relative size

σ(q) := − Υ′(q)

Υ′′(q)q
= σ̄ q−ε/σ̄ (58)

The parameter ε/σ̄ is the elasticity of the demand elasticity with respect to relative size and is

often known as the super-elasticity. If ε = 0 we have the constant demand elasticity σ(q) = σ̄.

If ε > 0, relatively large firms will face less elastic demand and charge high markups. If ε < 0,

relatively large firms will face more elastic demand and charge low markups.

Productivity distribution. For parsimony and as is standard in the literature we assume

that the distribution of productivity G(z) is Pareto with tail parameter ξ.

Calibration strategy. We assign values to a number of conventional macro parameters

that are held constant through all our quantitative exercises. We calibrate the parameters of

the demand system and the productivity distribution to match facts on the amount of sales

concentration and the relationship between markups and market shares within sectors.10

Assigned parameters. We assume that a period is one year and set the discount factor

β = 0.96 and depreciation rate δ = 0.06. We set the exit rate to ϕ = 0.04 to match the

employment share of exiting firms, as in Boar and Midrigan (2020). We set the elasticity of

value-added to capital α = 1/3 and set the elasticity of substitution between value-added and

materials to θ = 0.5, both conventional values. Preferences (1) are homothetic and consistent

with balanced growth. We set the inverse of the Frisch elasticity of labor supply to ν = 1. We

normalize the disutility from labor supply ψ and the entry cost κ to achieve a steady-state

output of Y = 1 and a steady-state total mass of firms N = 1 for our benchmark economy.

We report these parameter choices in Panel A of Table 1.

9The aggregator Υ(q) itself is given by

Υ(q) = 1 + (σ̄ − 1) exp

(
1

ε

)
ε
σ̄
ε−1

[
Γ

(
σ̄

ε
,

1

ε

)
− Γ

(
σ̄

ε
,
qε/σ̄

ε

)]
where Γ(s, x) :=

∫∞
x
ts−1e−tdt denotes the upper incomplete Gamma function.

10Our benchmark model with monopolistic competition features identical sectors so there is no variation
in outcomes between sectors. In Section 6 we consider an alternative model with oligopolistic competition
which features both within- and between-sector variation in concentration. We calibrate our oligopoly model
to match within-sector concentration and the sector-level relationship between markups and market shares.
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Table 1: Parameterization

Panel A: Assigned Parameters

β discount factor 0.96
δ depreciation rate 0.06
ϕ exit rate 0.04
α elasticity of value-added to capital 1/3
ν elasticity of labor supply 1
θ elasticity of substitution between value-added and materials 0.5

Panel B: Calibrated Parameters

calibration targets data

M aggregate markup 1.1 ∼ 1.4 1.05 1.15 1.25 1.35

top 5% sales share 0.57 0.57 0.57 0.57 0.57
materials share 0.45 0.45 0.45 0.45 0.45

b̂ regression coefficient 0.16 0.16 0.16 0.16 0.16

parameter values

ξ Pareto tail 20.70 6.84 4.07 2.89
σ̄ demand elasticity 29.10 10.86 7.21 5.66
ε/σ̄ super-elasticity 0.16 0.16 0.16 0.16
φ weight on value-added 0.51 0.43 0.33 0.21

Panel A reports assigned parameters held constant through all our quantitative exercises. Panel B reports calibrated parameters
for our benchmark model with monopolistic competition and Kimball demand. We report four cases corresponding to alternative
targets for the level of the aggregate markup, M = 1.05, 1.15, 1.25 and 1.35, over the range of M implied by the US Census
of Manufactures from 1972 to 2012, as discussed in Appendix B. For each M we calibrate the Pareto tail ξ, demand elasticity
σ̄, super-elasticity ε/σ̄ and weight on value-added φ to match the targets shown in Panel B. For each model we choose the

super-elasticity ε/σ̄ so that the slope coefficient b from equation (59) in the model matches the estimated slope coefficient b̂. See
the text for more details.
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Calibrated parameters. The level and dispersion of markups in our benchmark model

depend crucially on three underlying parameters: (i) the Pareto tail parameter ξ, (ii) the

super-elasticity ε/σ̄ that determines the sensitivity of a firm’s demand elasticity to its relative

size, and (iii) the ‘average’ demand elasticity σ̄. Intuitively, the Pareto tail parameter ξ

is pinned down by the amount of concentration in the distribution of firm size, the super-

elasticity ε/σ̄ is pinned down by the cross-sectional relationship between markups and market

shares, and σ̄ is pinned down by the overall level of markups. Specifically we target:

(i) Sales concentration. The Pareto tail parameter ξ is pinned down by our target

for sales concentration. We target the average sales share of the top 5% of firms (by

market share) in 6-digit NAICS sectors. For 2012 US manufacturing, the top 5% of

firms on average account for 57% of sales.

(ii) Relationship between markups and market shares. The super-elasticity ε/σ̄

is pinned down by the relationship between firm-level markups and market shares in

our model.11 As discussed in detail below, in our benchmark model the super-elasticity

ε/σ̄ corresponds to the slope coefficient b in a regression of (transformed) markups on

market shares. We estimate this regression on firm-level data from the US Census

of Manufactures 1972 to 2012 and obtain a precisely estimated b̂ = 0.16. In our

benchmark model this slope coefficient is the super-elasticity so for our benchmark

model we set ε/σ̄ = 0.16. In other versions of our model with different demand systems

we use indirect inference, choosing parameters so that the slope coefficient in the model

matches the estimated slope coefficient b̂ = 0.16.

(iii) Aggregate Markup. The average elasticity σ̄ is pinned down by our target for

the aggregate markup M. As discussed in Appendix B, the aggregate markup we

compute in the Census of Manufactures data ranges from about 1.1 to 1.4 depending

on the Census year and the specification. The existing literature on markups in the

US economy also provides a wide range of estimates for M.12 Given this range of

estimates, rather than commit to a single target for the aggregate markup, for our

benchmark model we recalibrate σ̄ (jointly, with our other parameters) forM ranging

from 1.05 to 1.45.

Finally, we calibrate the weight φ on value-added in the gross-output production function

by targeting a materials share of 45% for the US economy in 2012. For eachM we calibrate

this parameter jointly with the three key parameters ξ, ε/σ̄, and σ̄ as discussed above.

11This is similar to how we estimated the within-industry relationship between market shares and markups
in Edmond, Midrigan and Xu (2015) but adapted to the Kimball demand system used here.

12See e.g., Atkeson, Burstein and Chatzikonstantinou (2019), Barkai (2020), De Loecker, Eeckhout and
Unger (2020), Gutiérrez and Phillippon (2017a,b), and Hall (2018) etc. Basu (2019) surveys this literature.
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Regression specification details. The key to our calibration strategy is the relationship

between markups and market shares used to pin down the super-elasticity. To derive this

relationship we use the fact that in our model both markups µit(s) and market shares ωit(s)

are strictly increasing functions of relative size qit(s). Eliminating qit(s) we can then write

markups as a strictly increasing function of market shares. In particular, as shown in Ap-

pendix B, in a version of our model with time-invariant firm-specific demand shifters and

sector specific Kimball aggregators, the relationship between market shares and markups

works out to be

1

µit(s)
+ log

(
1− 1

µit(s)

)
= a(s) + ai(s) + at(s) + b(s) logωit(s), b(s) =

ε(s)

σ̄(s)
(59)

where the firm fixed effects ai(s) control for the time-invariant firm-specific demand shifters

and the sector-time fixed effects at(s) control for sector-time variation in the Kimball demand

index. The transformation on the LHS is strictly increasing in µit(s) and independent of other

parameters. In this sense the slope coefficient b(s) on the RHS is a measure of the strength

of the within-sector relationship between markups and market shares. For our benchmark

calibration we take the model at face-value and impose a common slope coefficient b(s) = b.13

We estimate this regression using data from the US Census of Manufactures from 1972 to

2012. We construct firm-level markups µit(s) as discussed below and market shares ωit(s)

within each 6-digit NAICS sector for each Census year. As reported in Table 2, we obtain

an estimated slope coefficient b̂ = 0.162 with standard error 0.002 clustered at the firm level.

Firm-level markups. As discussed in Appendix B, to implement this regression we infer

firm-level markups µit(s) from the cost-minimization condition14

µit(s) =
pit(s)yit(s)

Wtlit(s)
× αlt(s) (60)

Our key assumption is that the elasticity of output with respect to labor αlt(s) is common to

all firms within a sector.15 Under constant returns to scale,16 we then have, for each firm

αlt(s) =
Wtlit(s)

Wtlit(s) +Rtkit(s) + xit(s)
(61)

We estimate this elasticity by averaging (61) over firms within each 6-digit NAICS sector.17

We allow this elasticity to vary over time by constructing it for each Census year. We then

have an estimate of αlt(s) that we can plug back into (60) to construct µit(s).

13We discuss the sensitivity of our results to this common slope coefficient assumption in Appendix C.
14For multi-establishment firms we construct establishment-level markups µeit(s) and then aggregate to

firm-level markups µit(s) weighting establishments e by their their share of the firm’s wage bill.
15For our benchmark model, this elasticity is αlt(s) = (1 − α)ζt, i.e., the elasticity of output with respect

to value-added ζt times the elasticity of value-added with respect to labor (1− α), see Appendix B.
16Our results are robust to relaxing the assumption of constant returns to scale, see Appendix C.
17We take this average to reduce the role of measurement error. These calculations also use sector-specific

user costs of capital from the NBER-CES and BLS as in Foster, Grim and Haltiwanger (2016).
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Table 2: Relationship between Markups and Market Shares

Dependent Variable 1
µit(s)

+ log
(

1− 1
µit(s)

)

logωit(s) 0.063 0.162 0.187
(0.001) (0.002) (0.003)

Sector × Year FE Y Y Y
Firm FE Y Y
Firm Age Y

R2 0.084 0.531 0.540
Observations 609,000 369,000 315,000

Firm-level markups µit(s) constructed from the US Census of Manufactures from 1972 to 2012, as discussed in the text. Market
shares ωit(s) of firm i within each 6-digit NAICS sector s. We include sector × year fixed effects to control for sector-specific shifts
in the Kimball demand index dt(s). Our benchmark specification also includes firm fixed effects to contol for any time-invariant
firm-specific component of demand. Results robust to including firm age. Standard errors clustered at the firm level.

An alternative to this would be to estimate sector-specific production functions. But

recent work by Bond, Hashemi, Kaplan and Zoch (2021) demonstrates that in the presence

of variable markups it is not possible to consistently estimate output elasticities when only

revenue data is available.18 Using the simple labor input expenditure share approach also

makes our results easier to compare to recent empirical work, such as Autor, Dorn, Katz,

Patterson and Van Reenen (2020) and De Loecker, Eeckhout and Unger (2020), that also

report such measures.

Other distortions. Our model abstracts from other distortions at either the firm- or

sector-level that may drive a wedge between firm revenues and expenditure on labor input. If

the relationship between markups and market shares was log-linear, we could use fixed effects

to control for persistent firm- or sector-level distortions that confound the measurement of

markups in (60). In a robustness exercise, we implement this approach by taking a log-linear

approximation to the LHS of (59). See Appendix C for details.

Model fit. Panel B of Table 1 reports the parameter values that minimize our objective

function for four values of the aggregate markup, M = 1.05, 1.15, 1.25 and 1.35. To match

a low level of markups, M = 1.05, while targeting a top 5% sales share of 0.57 requires

18That said, De Ridder, Grassi and Morzenti (2022) show by simulation that markups estimated using
revenue data are systematically related to the true markups in their model. In this sense the revenue-based
estimates are informative about markup variation even if not informative about markup levels.
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Table 3: Markup Dispersion and Productivity Losses

cost-weighted distribution of markups

aggregate markup, M 1.05 1.15 1.25 1.35

p25 markup 1.04 1.11 1.17 1.23
p50 markup 1.05 1.14 1.23 1.31
p75 markup 1.06 1.18 1.31 1.43
p90 markup 1.07 1.23 1.40 1.58
p99 markup 1.11 1.35 1.63 1.97

aggregate productivity losses, %

gross output 0.28 0.97 1.83 2.86
value-added 0.61 2.71 6.08 10.73
value-added, M = 1 0.51 1.85 3.63 5.85

Cost-weighted steady-state distribution of markups and aggregate productivity losses for four calibrations of our benchmark
model, corresponding to targets for the aggregate markup M = 1.05, 1.15, 1.25 and 1.35. Gross output aggregate productivity
loss is (Z−Z∗)/Z∗×100, and similarly for the value-added aggregate productivity loss. To isolate the effect of misallocation on
value-added aggregate productivity we also report the value-added aggregate productivity loss with the same amount of markup
dispersion but holding M = 1 to eliminate the distortion between value-added and materials, see text for details.

a high average demand elasticity, σ̄ = 29.1, and a thin-tailed productivity distribution,

ξ = 20.7. To match a high level of markups, M = 1.35, while targeting the same top 5%

sales share requires a much lower average demand elasticity, σ̄ = 5.66, and a fatter-tailed

productivity distribution ξ = 2.89. Though our estimate of ε/σ̄ = 0.162 is much lower

than typically assumed in macro studies that attempt to match the response of prices to

changes in monetary policy or exchange rates, it is in line with the micro estimates surveyed

by Klenow and Willis (2016). In Appendix B we find an almost identical super-elasticity

ε/σ̄ = 0.16 best fits the relationship between markups and market shares in the Taiwanese

manufacturing firms studied by Edmond, Midrigan and Xu (2015).

4.2 Markups and misallocation

Markup distribution. Table 3 reports the cost-weighted steady-state distribution of markups

in our model for the same four values of the aggregate markup. As we target higher lev-

els of the aggregate markup M the model implies more markup dispersion. This occurs

because as we target higher M, requiring a lower average demand elasticity σ̄, we need a

fatter-tailed productivity distribution to hold the top 5% sales share unchanged. In turn,

a fatter-tailed productivity distribution creates more large firms who charge large markups,
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Figure 1: Markup Distribution and Misallocation in Benchmark Model
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Left panel shows cost-weighted steady-state markup distribution in our benchmark model with monopolistic competition and
Kimball demand for a range of targets for the aggregate markup M. For each M we recalibrate the Pareto tail ξ, demand
elasticity σ̄, super-elasticity ε/σ̄ and weight on value-added φ to match the calibration targets in Table 1. Right panel shows
implied amounts of misallocation in aggregate gross output and aggregate value-added. To isolate the effect of misallocation
on value-added aggregate productivity we report the value-added aggregate productivity loss with the same amount of markup
dispersion but holding M = 1 to eliminate the distortion between value-added and materials, see text for details. Shaded
interval indicates range of M implied by the US Census of Manufactures from 1972 to 2012, as discussed in Appendix B.

increasing markup dispersion. We illustrate this in Figure 1 using a fine grid for M.

Misallocation. The markup dispersion generated by our model implies that there are

aggregate productivity losses due to misallocation. For gross output aggregate productivity

we compare Z in the the steady state of our benchmark economy to the level of gross output

aggregate productivity Z∗ that could be achieved by a planner facing the same technology

and resource constraints who could reallocate factors of production across producers. As

shown in the right panel of Figure 1, for the empirically plausible range of M, gross output

aggregate productivity Z in our benchmark economy is on the order of 1% to 3% below the

level of gross output aggregate productivity Z∗ that could be achieved by a planner.

We also compute value-added aggregate productivity losses. In Appendix G we show that

value-added aggregate productivity can be written

Zvalue-added = φ
1
θ−1

(
1− (1− φ)Zθ−1M−θ)

(1− (1− φ)Zθ−1M1−θ)
θ
θ−1

Z (62)

where φ is the weight on value-added, θ is the elasticity of substitution between value-
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Figure 2: Equilibrium and Planner Allocations
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The left panel shows the equilibrium relative size q(z) and the planner’s relative size q∗(z) as functions of productivity for our
benchmark economy with M = 1.15. The right panel shows the equilibrium employment l(z) and the planner’s employment
l∗(z) for the same economy. More productive firms have higher markups and produce too little and employ too little compared
to the planner’s allocation. Less productive firms produce too much and employ too much compared to the planner’s allocation.
In this figure aggregate employment in the decentralized equilibrium is the same as aggregate employment for the planner. Our
measure of misallocation is the aggregate output loss implied by the equilibrium allocation relative to the planner’s allocation.

added and materials in the gross output production function, and where as above Z is gross

output aggregate productivity. While the level of gross output aggregate productivity Z is

independent of the level of the aggregate markupM, depending only on markup dispersion,

the level of value-added aggregate productivity does depend on the level ofM. This is because

the aggregate markup M directly distorts the choice of materials relative to value-added.

For the planner, value-added aggregate productivity works out to be

Z∗value-added = φ
1
θ−1

(
1− (1− φ)Z∗ θ−1

)
(1− (1− φ)Z∗ θ−1)

θ
θ−1

Z∗ (63)

where Z∗ is the planner’s gross output aggregate productivity. In short, markups reduce

value-added aggregate productivity relative to the efficient allocation both because markup

dispersion reduces Z relative to Z∗ and because the aggregate level of markupsM distorts the

use of materials relative to value-added. We report these value-added aggregate productivity

losses in Table 3. To isolate the role of markup dispersion we also report the value-added

productivity losses that would arise if M = 1, as shown in the right panel of Figure 1.

25



To illustate the difference in allocations, Figure 2 compares the relative size q(z) and

employment l(z) of a firm with productivity z in the decentralized equilibrium to the planner’s

counterparts q∗(z) and l∗(z). More productive firms have higher markups and produce and

employ too little compared to the planner’s allocation. Less productive firms produce and

employ too much compared to the planner’s allocation. Notice that the planner’s allocation is

not log-linear in productivity, as it would be with CES demand. The extra concavity reflects

strongly diminishing marginal productivity as the relative size q increases. If misallocation

losses were calculated assuming a constant demand elasticity σ̄ rather than variable demand

elasticities σ(q) = σ̄q−ε/σ̄ we would find higher misallocation (for a given amount of dispersion

in marginal revenue products) because we would overstate the gains from reallocating factors

from small, less productive firms to large, more productive firms.

Comparison with Baqaee and Farhi (2020). In related work, Baqaee and Farhi (2020)

calculate that the value-added aggregate productivity gains from eliminating all markups are

about 20%, about twice as large as the value-added aggregate productivity gains in even the

most extreme calibration of our model. Why do they find much larger effects of markup

dispersion on productivity? The key point is that they feed into their calculation all the

variation in estimated markups (e.g., as in De Loecker, Eeckhout and Unger, 2020; Gutiérrez

and Phillippon, 2017b) whereas we feed in that component of markups that systematically

varies with firm market shares. In this sense, we use only that part of the cross-sectional

variation in markups that is correlated with firm relative size. Because the estimated markups

they use are more dispersed than the markups implied by our model, they find larger effects

of markup dispersion on aggregate productivity.19

5 How costly are markups?

We now present our main results on the welfare costs of markups. We first quantify the total

welfare costs of markups in our benchmark economy for a range of values for the aggregate

markup M. We then show how the efficient allocation can be implemented by a specific

nonlinear schedule of size-dependent subsidies and show how to isolate aspects of this policy

to quantify the relative magnitudes of the different markup channels. We also study simple

entry subsidies that indirectly affect markup distortions through the amount of competition.

We measure the welfare costs of markups by asking how much the representative con-

sumer would benefit from implementing the efficient allocation that eliminates all markup

distortions, taking the transitional dynamics into account. We find that the total welfare

costs of markups are not only increasing in our target forM they are increasing and convex

19See Eslava and Haltiwanger (2020) who study the life-cycle of Colombian manufacturing plants and find
that markup variation plays only a small role in accounting for variation in average revenue products.
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inM. Because of this, the total welfare costs can be large. For example, for an economy with

aggregate markupM = 1.15, implementing the efficient allocation results in a consumption-

equivalent welfare gain of about 8.7%, rising to 23.6% for an economy with M = 1.25 and

49.7% for an economy with M = 1.35. We find that a uniform output subsidy that offsets

the aggregate markup alone goes a long way towards achieving full efficiency.

5.1 Welfare cost of markups

We first compare the distorted steady state in our decentralized equilibrium to that chosen

by a planner, then calculate the welfare gains from implementing the efficient steady state

taking the transitional dynamics into account.

Steady state comparisons. The first six columns of Table 4 report the percentage change

in consumption C, gross output Y , employment L, mass of firms N , physical capital K, and

aggregate productivity Z from the initial distorted steady state to the efficient steady state

for each of four values of the aggregate markup M. The efficient steady state features

higher consumption, higher output, and employment. Aggregate productivity is higher, both

because of the elimination of misallocation and because of the increase in product variety,

i.e., increase in the mass of firms N .20

Welfare gains from implementing efficient allocation. The last column of Table 4

reports the welfare gains for the representative consumer in consumption-equivalent units

including the transition, i.e., these take into account the deferred increase in consumption as

investment in physical capital and product variety accumulates over time. These dynamics

also take into account the time path of employment. We find that if the aggregate markup

is low, M = 1.05, the representative consumer needs to be compensated with an additional

1.34% consumption per period in order to be indifferent between the initial distorted steady

state and the transition to the efficient steady state. This increases to 8.67% consumption

per period if the aggregate markup is M = 1.15 and to 49.66% consumption per period if

the aggregate markup is M = 1.35. The welfare gains are higher when we target higher

M. Indeed the gains are convex inM. As we target higherM for the benchmark economy,

both the level of markups and the amount of markup dispersion increase. We illustrate this

convexity in Figure 3 using a fine grid for M with the upper bound extended to 1.45.

5.2 Implementing the efficient allocation

We now show how the efficient allocation can be implemented by a specific nonlinear schedule

of size-dependent subsidies. This policy removes the aggregate markup distortion, removes

20We discuss the effects of variety on aggregate productivity in more detail in Appendix I.
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Table 4: Implications of Alternative Policies, Benchmark Model

steady state comparisons, %

Y C L N K Z welfare, %

M = 1.05 efficient 15.3 11.0 6.0 12.3 24.1 0.9 1.34
uniform subsidy 13.7 9.1 5.7 3.4 22.0 0.2 0.65
size-dependent subsidy 1.4 1.7 0.3 8.1 1.7 0.7 0.71
entry subsidy 1.1 1.3 0.4 11.3 1.4 0.6 0.06

M = 1.15 efficient 59.6 44.5 18.0 20.1 100.4 4.1 8.67
uniform subsidy 51.8 35.8 17.0 9.5 88.5 1.5 5.90
size-dependent subsidy 5.3 6.2 1.0 8.3 6.6 2.3 2.87
entry subsidy 6.3 7.4 2.4 20.0 8.1 3.0 0.56

M = 1.25 efficient 134.0 102.3 30.1 26.7 246.2 8.9 23.64
uniform subsidy 112.7 79.7 28.2 15.0 208.2 3.9 17.36
size-dependent subsidy 10.8 12.5 1.8 8.1 13.6 4.1 6.26
entry subsidy 17.4 20.3 6.0 29.1 23.0 7.4 1.98

M = 1.35 efficient 263.2 203.4 42.1 32.2 540.3 15.1 49.66
uniform subsidy 213.5 152.9 39.2 19.8 435.1 7.4 37.41
size-dependent subsidy 18.4 20.9 2.7 7.6 23.6 6.0 11.32
entry subsidy 38.6 44.9 11.9 39.0 52.6 14.0 5.11

The first six columns report the percentage change from the initial distorted steady state to the new steady state. The last column
reports the consumption equivalent welfare gains (including transitional dynamics). For eachM we recalibrate the Pareto tail ξ,
demand elasticity σ̄, super-elasticity ε/σ̄ and weight on value-added φ. The alternative policies are (i): the efficient allocation,
where all markups are removed, (ii) a uniform subsidy that eliminates the aggregate markup, (iii) size-dependent subsidies that
eliminate misallocation and the entry distortion, and (iv) the uniform entry subsidy that leads to the largest welfare gain.

markup dispersion (and hence misallocation), and removes the entry distortion. We then

show how to isolate different aspects of this policy to quantify the relative magnitudes of the

different markup channels. This policy is financed by lump-sum taxes on the representative

consumer. We view these calculations as a device for isolating the role of each distortion. The

actual consequences of such a policy would of course be much more complex in economies with

heterogeneous consumers and other frictions (see Boar and Midrigan, 2020, for example).

Direct policy intervention to remove markup distortions. In the decentralized equi-

librium, the profits of a firm with productivity z facing Kimball demand can be written

πt(z) =
[

Υ′(qt(z))qt(z)Dt −
Ωt

z
qt(z)

]
Yt (64)
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Figure 3: Welfare Gains from Alternative Policies
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Consumption equivalent welfare gains (including transitional dynamics), from the initial distorted steady state to the new steady
state for a range of targets for the aggregate markup M. For each M we recalibrate the Pareto tail ξ, demand elasticity σ̄,
super-elasticity ε/σ̄ and weight on value-added φ. The alternative policies are (i): the efficient allocation, where all markups are
removed, (ii) a uniform subsidy that eliminates the aggregate markup, (iii) size-dependent subsidies that eliminate misallocation
and the entry distortion, and (iv) the uniform entry subsidy that leads to the largest welfare gain. Shaded interval indicates
range of M implied by the US Census of Manufactures from 1972 to 2012, as discussed in Appendix B.

where Dt denotes the Kimball demand index from (34) above.21 Now suppose that firms are

paid a size-dependent subsidy Tt(q) given by

Tt(q) =
[

Υ(q)−Υ′(q)q
]
DtYt (65)

This policy takes away revenues in proportion to Υ′(q)q and returns revenues in proportion to

Υ(q) which will then induce firms to price at marginal cost. In particular, given the subsidy

Tt(q), a firm has net profits π̂t(z) := πt(z) + Tt(qt(z)) which simplifies to

π̂t(z) =
[

Υ(qt(z))Dt −
Ωt

z
qt(z)

]
Yt (66)

This leads to the optimal price

pt(z) = Υ′(qt(z))Dt =
Ωt

z
(67)

21In our benchmark economy, sectors s ∈ [0, 1] are ex post identical and we have dt(s) = Dt, yt(s) = Yt,
pt(s) = 1, zt(s) = Zt, nt(s) = Nt etc.
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In other words, this policy induces firms to price at marginal cost with firm-level wedge

µt(z) = 1. Hence the aggregate wedge is also Mt = 1. Given this, net profits are equal to

the transfer π̂t(z) = Tt(qt(z)) and so the free entry condition becomes

κWt = β

∞∑
j=1

(β(1− ϕ))j−1 Ct
Ct+j

∫ [
Υ(qt+j(z))−Υ′(qt+j(z))qt+j(z)

]
Dt+jYt+j dG(z)

= β

∞∑
j=1

(β(1− ϕ))j−1 Ct
Ct+j

(Dt+j − 1)
Yt+j
Nt+j

(68)

where the second line follows using the definitions of the Kimball aggregator (32) and its

demand index (34). To see how the free-entry condition under this policy compares to the

planner’s entry condition, use (54) to write the planner’s elasticity of aggregate productivity

with respect to new varieties
dZ∗t
dN∗t

N∗t
Z∗t

= (D∗t − 1) (69)

Plugging this elasticity into the planner’s entry condition (52) we see that the free-entry

condition under the policy Tt(q) coincides with the planner’s entry condition, i.e., this policy

also eliminates the entry distortion. We next show how to use a generalization of this policy

to isolate and quantify the relative importance of each channel.

5.3 Decomposing the implementation.

The nonlinear schedule Tt(q) directly implements the efficient allocation. To study each

channel in isolation, it is helpful to generalize this to

Tt(q) =
[
a0 Υ(q) + a1 Υ′(q)q

]
DtYt (70)

We can then recover the main cases of interest by setting the policy parameters a0, a1 appro-

priately. There are three main cases of interest: (i) setting a0 = 1 and a1 = −1 implements

the efficient allocation as discussed above, (ii) setting a0 = 0 and a1 = χ > 0 implements a

uniform subsidy that leaves the dispersion in marginal revenue products unchanged but drives

the aggregate wedge down toM/(1 + χ), while (iii) setting a0 = 1/(1 + χ) and a1 = −1 im-

plements size-dependent subsidies that eliminate the dispersion in marginal revenue products

while leaving an aggregate wedge equal to 1 + χ.

Uniform subsidy. Setting a0 = 0, a1 = χ implements a uniform subsidy giving net profits

π̂t(z) =
[
(1 + χ)Υ′(qt(z))qt(z)Dt −

Ωt

z
qt(z)

]
Yt (71)

which leads firms to set the price

pt(z) =
µt(z)

1 + χ

Ωt

z
(72)
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where µt(z) is the benchmark markup of a firm with productivity z. This subsidy induces

firms to produce more and to use more of each input, driving the wedge between price and

marginal cost down to µt(z)/(1 + χ) and driving the aggregate wedge in the optimality

conditions of the representative firm down to Mt/(1 + χ). Thus by setting χ = M− 1 for

the initial distorted steady state we can put in motion a transition to a new steady state

where the aggregate wedge has been eliminated. But this uniform subsidy has no effect on

relative markups and so leaves steady state misallocation unchanged. This subsidy affects

the entry condition but generally leaves it distorted.

Table 4 reports the effect of introducing the uniform subsidy on steady state outcomes for

four levels of the aggregate markupM. Figure 3 reports the effect on welfare, including the

transitional dynamics, for a fine grid ofM. For all levels ofM, the uniform subsidy accounts

for a large share of the potential welfare gains. For example, if the aggregate markup is low,

M = 1.05, the uniform subsidy increases gross output by 13.7%, consumption by 9.1%, and

employment by 5.7%. These increases are only slightly smaller than those from implementing

the efficient allocation. If the aggregate markup is higher, the uniform subsidy delivers larger

increases because the economy is more distorted to begin with. The uniform subsidy delivers

less of an increase to aggregate productivity Z and the mass of firms N because these reflect

the continued presence of misallocation and a distorted entry margin. Notice that as we

increase M, not only are the welfare gains from the uniform subsidy larger, they are also

larger as a share of the total gains. For example, ifM = 1.05 the uniform subsidy accounts for

about one-half of the total welfare gains (0.65% out of 1.34%), rising to nearly three-quarters

of the total welfare gains if M = 1.35 (37.41% out of 49.66%).

Size-dependent subsidies. Setting a0 = 1/(1+χ) and a1 = −1 implements size-dependent

subsidies that drives the wedge between price and marginal cost down to µt(z)/(1+χ) = 1 for

each firm but leaves the aggregate wedge in the optimality conditions of the representative

firm equal to 1 + χ. Thus by setting χ = M− 1 for the initial distorted steady state we

can put in motion a transition to a new steady state where the the aggregate wedge remains

M but where the marginal revenue product of factors are equated across firms, i.e., a new

steady state where there is no misallocation, and where the entry distortion is partly offset.

Table 4 shows that such subsidies have a more modest impact than the uniform subsidy. If

the aggregate markup is low,M = 1.05, these size-dependent subsidies increase gross output

by 1.4%, consumption by 1.7%, and employment by 0.3%, noticeably less than the impact

of the uniform subsidy. Where these polices have more success is on aggregate productivity

Z which now increases by 0.7% when misallocation is eliminated as opposed to the 0.2%

gain from the uniform subsidy driven by love-of-variety effects. If the aggregate markup is

higher, the amount of markup dispersion in the benchmark economy is larger and so the level
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of misallocation is also higher. In terms of the share of the total gains, the size-dependent

subsidies account for about one-half if M = 1.05 (0.71% out of 1.34%), falling to about

one-quarter if M = 1.35 (11.32% out of 49.66%).

The direct intervention Tt(q) eliminates all markup distortions when both the uniform

subsidy component and the size-dependent component are switched on. If only one or other

of these components is switched on, entry generally remains distorted as well. We next

evaluate the extent to which indirect interventions in the product market, such as those

which encourage entry and competition, can reduce markup distortions.

5.4 Subsidizing entry

A policy intervention like Tt(q) reduces markup distortions directly, i.e., markups act like a

tax on production so subsidizing production reduces the distortion. We now contrast such

direct policies with a more indirect policy for reducing markup distortions — subsidizing

entry, to increase the amount of competition.

Optimal entry subsidy. Consider the introduction of uniform entry subsidy χe that re-

duces the sunk entry cost from κ to κ/(1+χe). In Table 4 we report the impact of the optimal

entry subsidy that delivers the largest total welfare gain. If the aggregate markup is low,

M = 1.05, we find that the optimal entry subsidy delivers a relatively large 11.3% increase

in the mass of firms N but has a more modest effect on economic activity, increasing gross

output by 1.1%, consumption by 1.3%, and employment by 0.4%. Aggregate productivity

increases by 0.6%, reflecting the increase in variety. But these increases in activity do not

lead to substantial welfare gains, due to the cost of creating new varieties incurred during the

transition. The gains from the optimal entry subsidy are 0.06%, about one-twentieth of the

total gains available (0.06% out of 1.34%). If the aggregate markup is higher, sayM = 1.15,

the optimal entry subsidy delivers a 20% increase in the mass of firms N but still entry only

accounts for just over one-twentieth of the total gains (0.56% out 8.67%). If M = 1.35, the

optimal entry subsidy delivers a 39% increase in the mass of firms N but still entry accounts

for only about one-tenth of the total gains (5.11% out of 49.66%).

Why are the gains from subsidizing entry so low? The gains from entry are low

because increasing the number of firms has tiny effects on both the aggregate markup and on

misallocation. In this sense, subsidizing entry is too blunt a tool to deal with product market

distortions. For example, if the benchmark economy hasM = 1.05 the optimal entry subsidy

delivers an 11.3% increase in the mass of firms N but the aggregate markup falls by only

about 0.02% toM = 1.0498. Similarly if the benchmark economy hasM = 1.15, the optimal

entry subsidy delivers a 20% increase in the mass of firms N but the aggregate markup hardly
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Figure 4: Optimal Entry Subsidy, M = 1.15
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Consumption equivalent welfare gains (including transitional dynamics) as a function of the entry subsidy χe for aggregate
markup M = 1.15. The welfare gains for entry subsidies reported in Table 4 are for the optimal entry subsidies, i.e., for the
peak of such curves for each M. In our benchmark calibration there is insufficient entry in the initial distorted steady state so
the optimal entry subsidy is positive. But entry subsidies that are too large lead to welfare losses.

changes, falling toM = 1.149. Entry subsidies do deliver increases in aggregate productivity,

but these are due to love-of-variety effects, not due to a reduction in misallocation.

The result that more competition does not decrease the aggregate markup may appear

counterintuitive but is, in fact, a robust result in a large class of models in the international

trade literature which have shown that the removal of trade costs (which subjects domestic

producers to more competition) leaves the markup distribution unchanged.22 To understand

this result, recall that the aggregate markup is a cost-weighted average of firm-level markups.

An increase in the number of firms has two effects on this weighted average. The direct effect

is a reduction in the relative size q and hence a reduction in the markups µ(q) of each firm.

But there is also an important compositional effect. Recall that in our model, small firms

face more elastic demand. This makes them more vulnerable to competition from entrants.

By contrast large firms face less elastic demand and are less vulnerable to competition from

entrants. An entry subsidy that increases the number of firms causes small, low markup

22See Bernard, Eaton, Jensen and Kortum (2003) and Arkolakis, Costinot, Donaldson and Rodŕıguez-Clare
(2019) who show that the markup distribution is invariant to changes in trade costs in models where variable
markups arise due to limit pricing and monopolistic competition with non-CES demand, respectively.
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Figure 5: Effect of Entry Subsidy on Markups, M = 1.15
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The left panel shows steady-state markups µ(z) for an economy with mass of firms N = 1 and an entry subsidy chosen to triple
the mass of firms to N = 3. The right panel shows the ratio of employment l(z) at N = 3 to employment at N = 1. Small,
low markup firms contract by more than large, high markup firms so that high markup firms get relatively more weight in the
aggregate markup calculation. Because of this, the aggregate markup hardly changes. In this example, the aggregate markup
barely changes, from M = 1.150 to M = 1.146, even though the mass of firms triples.

firms to contract by more than large, high markup firms and the resulting reallocation means

high markup firms get relatively more weight in the aggregate markup calculation. In our

model, this offsetting compositional effect is almost exactly as large as the direct effect so

that overall the aggregate markup falls by a negligible amount. We develop this argument

more formally in Appendix F.

We illustrate the two offsetting effects in Figure 5. For visual clarity, we consider an

extreme parameterization in which we make the entry subsidy large enough to triple the

number of firms. Notice in the left panel that markups fall for all firms when the number of

firms increases. But the right panel shows that the largest, most productive firms shrink by

much less than the smallest, least productive firms. We show below that similar results are

obtained with other market structures.

5.5 Monopolistic competition extensions

We now consider two variations on our benchmark model: (i) where we retain Kimball de-

mand but where firm heterogeneity arises from differences in quality (demand shifters) rather
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than differences in productivity, and (ii) where we replace Kimball demand with symmetric

translog demand. For both these variations we retain the assumption of monopolistic compe-

tition. We present results for our model with oligopolistic competition and a finite number

of firms per sector in the following section.

5.5.1 Heterogeneity in quality

In our benchmark model, markups are pinned down entirely by market shares. We now

consider an extension where differences in quality imply differences in demand schedules

across firms, breaking the tight link between markups and market shares in our benchmark.

Setup. Let z ∼ G(z) denote the quality of a firm’s product and write the Kimball aggregator

Nt

∫
zΥ
(yt(z)

Yt

)
dG(z) = 1 (73)

Following the same steps as in our benchmark model, as shown in Appendix E, this leads to

a relationship between markups and market shares of the form

1

µt(z)
+ log

(
1− 1

µt(z)

)
= a + b logωt(z) − b log z, b =

ε

σ̄
(74)

Unlike our benchmark model, cross-sectional variation in market shares is no longer a suffi-

cient statistic for the effect of variation in z. In our benchmark, we interpreted the estimated

b̂ as a direct estimate of ε/σ̄. But in this extension, since the market share is negatively

correlated with the empirically unobserved quality z, the linear regression coefficient is no

longer a consistent estimate of ε/σ̄. In recalibrating the model, we use indirect inference

to pin down ε/σ̄, increasing the value of ε/σ̄ until the coefficient in the model b equals its

counterpart in the data, b̂ = 0.162, jointly with our other calibration targets.

Results. For brevity we focus on the case of M = 1.15. As shown in Appendix E, the

quality model fits the data just as well as our benchmark. The most important difference is

that the super-elasticity needs to be substantially higher, ε/σ̄ = 0.304 as opposed to 0.162.23

Given the substantially higher super-elasticity, ε/σ̄ = 0.304, the quality model implies more

markup dispersion, especially in the upper tail. This leads to larger losses from misallocation.

Because of this, the total welfare costs are larger than in our benchmark and the gains from

size-dependent policies that eliminate misallocation and the entry distortion are both larger

in absolute terms and larger as a share of the total than in our benchmark. That said, we

continue to find that a uniform output subsidy alone can go more than half way to achieving

full efficiency. As in our benchmark, the gains from the optimal entry subsidy are still much

smaller than the gains from other policies.

23This higher super-elasticity is almost exactly what we find in an alternative parameterization where we
infer the super-elasticity from a log-linear approximation to (59). In this alternative log-linear specification
the quality effect would be absorbed by firm fixed effects, see Appendix C for details.
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5.5.2 Translog demand

We now consider a version of our model where we replace Kimball demand with symmetric

translog demand as in Feenstra (2003). For this version of the model we revert to our

benchmark setting where firm heterogeneity arises from differences in productivity.

Setup. Let the technology for final good producers be given by a symmetric translog ex-

penditure (cost) function which we write

log(PtYt) = log Yt +
1

2σ̄Nt

+

∫
log pt(z) dG(z)

+
σ̄Nt

2

((∫
log pt(z) dG(z)

)2

−
∫

log pt(z) 2 dG(z)

)
(75)

Markups and market shares. As shown in Appendix E, the symmetric translog specifi-

cation implies that the markup µt(z) of a firm with productivity z solves the static condition

µ+ log µ = 1 + log
( z
z∗t

)
, z > z∗t (76)

where z∗t is an endogenous productivity cutoff such that firms with z < z∗t have zero sales.

Moreover the translog specification implies that there is a linear relationship between markups

and market shares

µt(z) = 1 +
1

σ̄
ωt(z) (77)

As in our benchmark model, firms with higher market shares have higher markups. With

translog demand, the strength of this relationship is governed by 1/σ̄. The productivity

cutoff z∗t is the only aggregate variable that matters for the cross-sectional distribution of

markups — and hence the only aggregate variable that matters for the the cross-sectional

distributions of market shares ωt(z).

To this point, our characterization of the translog model has restated standard results in

the trade literature, familiar from Feenstra (2003), Rodriguez-Lopez (2011), and Arkolakis,

Costinot, Donaldson and Rodŕıguez-Clare (2010, 2019) among others. We next show that

given a Pareto distribution of firm-level productivity G(z) we can solve explicitly for the cutoff

productivity z∗t and then aggregate markup Mt. Though closely related to these existing

papers, to the best of our knowledge, the following results are novel and may be of some

independent interest to researchers working with translog demand and Pareto distributions.

Solving for the cutoff z∗t . As shown in Appendix F, the cutoff z∗t is given by

z∗t = max
[

1 , σ̄Nt e
ξEξ(ξ)

]1/ξ

(78)
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Figure 6: Aggregate Markup with Translog Demand
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Left panel shows the solution for the aggregate markup Mt with translog demand as a function of the effective mass of firms
σ̄Nt for various levels of the Pareto tail ξ. Right panel shows how the parameter space is partitioned into regions where there
are positive selection effects, z∗t > 1, or no selection effects, z∗t = 1. Whenever there are positive selection effects, the aggregate
markup is constant at Mt = 1 + 1/ξ. By contrast with identical firms, the aggregate markup would be given by 1 + 1/σ̄Nt as
shown. With firm heterogeneity, the aggregate markup is decreasing in σ̄Nt only if there are no selection effects, z∗t = 1.

where En(x) :=
∫∞

1
t−ne−xt dt denotes the generalized exponential integral. Since the mass

of firms Nt is a state variable (is predetermined), this determines z∗t and from (76) we then

know the entire distribution of markups, market shares and relative prices given Nt. The

constant eξEξ(ξ) depends only on the Pareto tail parameter ξ > 1 and is strictly decreasing

in ξ, i.e., increasing in productivity dispersion 1/ξ. If either the ‘effective’ mass of firms σ̄Nt

is sufficiently low or productivity dispersion 1/ξ is sufficiently low we have z∗t = 1, meaning

that there are no selection effects and all firms operate. But if either σ̄Nt is sufficiently high

or productivity dispersion 1/ξ is sufficiently high we have z∗t > 1, meaning that there are

positive selection effects. Intuitively, when demand is more elastic, or when the mass of firms

is larger, or when productivity is more dispersed, there is more competitive pressure and

selection effects are stronger, increasing the cutoff z∗t . The right panel of Figure 6 illustrates,

showing how the locus σ̄Nt e
ξEξ(ξ) = 1 partitions the parameter space into the regions where

z∗t = 1 (below the curve) and z∗t > 1 (above the curve).

Solving for the aggregate markupMt. Our assumption that G(z) is Pareto also implies

a simple solution forMt. As shown in Appendix F, using the fact that the aggregate markup

can be written as a harmonic weighted average of firm-level markups, the linear relationship

between market shares and markups (77), the static markup condition (76), and our solution
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for the cutoff productivity z∗t , the aggregate markup Mt is given by

Mt =
(

1 +
1

ξ

)
×
(

max
[

1 , σ̄Nt e
ξEξ(ξ)

])−1

(79)

Since the mass of firms Nt is a state variable, this determines Mt. Now observe from (78)

that if σ̄Nt e
ξEξ(ξ) ≤ 1, implying z∗t = 1, then the aggregate markup is strictly decreasing in

Nt with an elasticity of −1. But whenever σ̄Nt e
ξEξ(ξ) > 1, i.e., whenever there are positive

selection effects, z∗t > 1, then the aggregate markup is constant at the specific value

Mt = 1 +
1

ξ
, whenever z∗t > 1 (80)

So whenever there are positive selection effects, z∗t > 1, e.g., σ̄ or productivity dispersion

1/ξ is sufficiently high, then increases in the mass of firms Nt have no effect on the aggregate

markup Mt. Instead, increases in Nt are absorbed by increases in the cutoff z∗t , i.e., by

stronger selection effects. This analytic result reinforces the lesson from our benchmark model

with Kimball demand where we found numerically that the aggregate markup is extremely

insensitive to changes in Nt.
24 The reason is the same: whenever z∗t > 1, an increase in Nt

increases z∗t thereby directly reducing all firm-level markups µt(z) according to (76). But low

markup firms contract by more than large, high markup firms and the resulting reallocation

means high markup firms get relatively more weight in the aggregate markup calculation. In

the translog case, so long as parameters are such that z∗t > 1, this offsetting compositional

effect is exactly as large as the direct effect so that overall the aggregate markup is unchanged.

Role of heterogeneity. Firm heterogeneity is essential to this result. If by contrast all

firms were identical, as in say Bilbiie, Ghironi and Melitz (2008, 2019), each firm would have

market share 1/Nt and the aggregate markup would be Mt = 1 + 1/σ̄Nt and would always

be decreasing in Nt. In the representative firm setting, there is the direct effect of an increase

in Nt on firm-level markups but this effect is the same for all firms so there is no offsetting

compositional effect. In this sense, accounting for the role of firm heterogeneity is crucial for

understanding the welfare effects of changes in the mass of firms Nt.
25

24As discussed in Appendix F, the model with Kimball demand is qualitatively similar to translog demand
in that for Kimball demand the aggregate markup Mt is also invariant to Nt if there are positive selection
effects. But in our benchmark calibration of the Kimball model, there are no selection effects and changes in
Nt do change Mt albeit by negligible amounts.

25Rodriguez-Lopez (2011) derives a related result, solving for the average markup
∫
µt(z) dG(z) with

translog demand and Pareto productivity and shows that this depends only on the Pareto tail ξ. Also
related, Arkolakis, Costinot, Donaldson and Rodŕıguez-Clare (2019) show that with translog demand and
Pareto productivity the univariate distribution of markups Prob[µ′ ≤ µ] depends only on the Pareto tail ξ.
Our key analytic contribution is to explicitly compute the aggregate markup, the sales-weighted harmonic

average Mt =
(
Nt
∫

(ωt(z)/µt(z))dG(z)
)−1

, which, as we have stressed throughout, is the key wedge in the
optimality conditions of the representative firm.
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Quantitative results. As discussed in Appendix E, the translog model does less well in

reproducing our calibration targets. As with the quality differences model, the translog model

implies considerably more markup dispersion, especially in the upper tail. This leads to larger

losses from misallocation relative to our benchmark model. Because of the larger amount of

misallocation in the initial distorted steady state, the total welfare costs are larger than in

our benchmark and the gains from size-dependent policies that eliminate misallocation and

the entry distortion are both larger in absolute terms and larger as a share of the total than

in our benchmark. Again we find that the gains from the optimal entry subsidy are much,

much smaller than the gains from other policies.

The extensions consider in this section show that, overall, our benchmark results are robust

to different monopolistically competitive setups. But one might reasonably suspect that this

has more to do with the assumption of monopolistic competition than the specific aggregator

we use. Perhaps a fundamentally different market structure will lead to much larger losses

from markups? To assess this, we now turn to an alternative model featuring oligopolistic

competition with genuine strategic interactions between firms.

6 Oligopolistic competition

How much does the assumed market structure matter? To assess this, we now present

calculations based on an alternative model featuring oligopolistic competition rather than

monopolistic competition as used in our benchmark. Our aggregation results hold regardless

of the market structure, but we will see that the oligopoly model has richer emprical content

and makes a number of predictions that differ from the monopolistic competition benchmark.

In particular, we find larger amounts of misallocation and hence larger gains from size-

dependent subsidies than in our benchmark model.

Setup. Let there be nt(s) ∈ N firms per sector with IID productivity draws zi(s) ∼ G(z).

Let the within-sector aggregator be Υ(q) = q
γ−1
γ for γ > η > 1 so that the model has the

nested-CES structure used by Atkeson and Burstein (2008) and Edmond, Midrigan and Xu

(2015). For our quantitative work we assume Cournot competition so that, as in (38) above,

the demand elasticity of a firm is given by the sales-weighted harmonic average

σit(s) =

(
1

η
ωit(s) +

1

γ
(1− ωit(s)

)−1

(81)

where ωit(s) = qit(s)
γ−1
γ denotes the market share of firm i in sector s.26 As stressed at

length above, this oligopoly model is encompassed by our general framework except that for

26In this oligopoly model, sectors are ex post heterogeneous so we put back dependence on s in the notation.
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the free-entry condition (40) expected profits are given by (43). In practice however, solving

this oligopoly model with a forward-looking free-entry condition endogenously determining

the number of firms is challenging.27 This is because there are many firms that each have

non-negligible effects on sector-level outcomes — outcomes in any given sector are a function

of the vector z(s) = (z1(s), z2(s), . . . , znt(s)(s)) of productivities. Because of the finite number

of firms, sectors are heterogeneous and we cannot invoke the law of large numbers to compute

expected profits. And because nt(s) is typically large, we need to compute high-dimensional

integrals with respect to the joint distribution Gnt(s)(z(s)) of z(s). In principle, the het-

erogeneity across sectors creates incentives for firms to direct entry towards more profitable

sectors. But to simplify the problem computationally, we assume that entry is random, that

firms can not direct entry in this way. We discuss these issues in more detail in Appendix D.

Relationship between markups and market shares. This nested-CES specification

implies that the inverse markup is linear decreasing in the market share

1

µit(s)
=

(
1− 1

γ

)
−
(

1

η
− 1

γ

)
ωit(s) (82)

As in our benchmark model, firms with higher market shares have higher markups. Here, the

strength of this relationship is governed by the gap between the between-sector elasticity of

substitution η and the within-sector elasticity of substitution γ > η. Multiplying both sides

of (82) by ωit(s) and summing over all firms i within sector s gives

1

µt(s)
=

(
1− 1

γ

)
−
(

1

η
− 1

γ

) nt(s)∑
i=1

ωit(s)
2 (83)

The model predicts a linear decreasing relationship between the sector-level inverse markup

1/µt(s) and the sector’s Herfindahl-Hirschman index (HHI) of sales concentration. From

(25), the sector-level labor share is proportional to the inverse markup, Wtlt(s)/pt(s)yt(s) =

(1−α)ζt/µt(s). Motivated by this, in calibrating the oligopoly model we use indirect inference

to pin down the gap between γ and η, choosing parameters so that our model reproduces the

b̂ = −0.21 slope coefficient in a regression of the change over time of sector-level labor shares

on the change in sector-level HHIs, as in Autor, Dorn, Katz, Patterson and Van Reenen

(2020), jointly with our other calibration targets.

Calibration. The oligopoly model features both within- and between-sector variation in

concentration. We calibrate the oligopoly model targeting measures of concentration within

4-digit sectors in the 2012 US Census of Manufactures as reported by Autor, Dorn, Katz,

Patterson and Van Reenen (2020). In particular, we target their top 4 sales share (CR4)

27Other applications of this oligopoly setup, e.g., Atkeson and Burstein (2008), Edmond, Midrigan and Xu
(2015), and De Loecker, Eeckhout and Mongey (2021), treat the number of potential producers as exogenous.
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Table 5: Parameterization, Oligopoly

calibration targets data

M aggregate markup 1.1 ∼ 1.4 1.05 1.15 1.25 1.35

CR4 top 4 sales share 0.43 0.37 0.43 0.43 0.43
CR20 top 20 sales share 0.72 0.76 0.72 0.72 0.72

materials share 0.45 0.45 0.45 0.45 0.45

b̂ regression coefficient −0.21 −0.21 −0.21 −0.21 −0.21

parameter values

ξ Pareto tail 28.08 8.51 5.15 3.72
γ elasticity of substitution within sectors 59.69 12.76 7.16 5.21
η elasticity of substitution between sectors 1.62 1.35 1.15 0.99
N average number of firms per sector 415 359 143 112
φ weight on value-added 0.70 0.58 0.46 0.30

The calibrated parameters for our oligopoly model. We calibrate the Pareto tail ξ, the within- and between-sector elasticities of
substitution γ and η, the sunk entry cost κ, and weight on value-added φ to match the targets shown. In practice, we choose the
average number of firms N per sector and back out the sunk cost κ that rationalizes N . The cross-sectional regression is of the
change over time in sector-level labor shares on the change in sector-level HHIs, as discussed in the text. All other parameters
are assigned as in Panel A of Table 1.

of 0.43 and top 20 sales share (CR20) of 0.73. We also target the slope in a regression of

the change over time in sector-level labor shares (inverse markups) on the change in sector-

level HHIs of b̂ = −0.21, i.e., we also target the sectoral relationship between markups

and concentration.28 As in our benchmark model we target a materials share of 0.45 and

consider a range of targets for the aggrgeate markup M. Intuitively, the two measures of

sales concentration pin down the Pareto tail ξ, which controls the amount of productivity

dispersion, and the sunk entry cost κ. The aggregate markup then pins down γ, while the

slope coefficient pins down the gap between γ and η. As shown in Table 5, the oligopoly

model hits all our calibration targets except when the target for the aggregate markup is

low, M = 1.05. For low levels of the aggregate markup, the oligopoly model struggles to

reproduce the top 4 sales concentration in the data. For any given M, the oligopoly model

requires less productivity dispersion than the benchmark model with Kimball demand and

monopolistic competition. For example, withM = 1.15 the oligopoly model requires Pareto

tail ξ = 8.51 as opposed to ξ = 6.84 in the benchmark model. On average, there is a relatively

large number of firms per sector, N = 359, but most of these firms are very small.

28The CR4 and CR20 are reported in Panel A of Figure 4 while the regression coefficient b̂ is from Table
2 baseline column 3 in Autor, Dorn, Katz, Patterson and Van Reenen (2020).
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Table 6: Markup Dispersion and Productivity Losses, Oligopoly

cost-weighted distribution of markups

aggregate markup, M 1.05 1.15 1.25 1.35

µt(s) µit(s) µt(s) µit(s) µt(s) µit(s) µt(s) µit(s)

p25 markup 1.04 1.02 1.12 1.09 1.21 1.17 1.29 1.25
p50 markup 1.05 1.04 1.14 1.11 1.23 1.19 1.32 1.27
p75 markup 1.06 1.07 1.16 1.17 1.27 1.26 1.37 1.36
p90 markup 1.07 1.10 1.21 1.27 1.33 1.41 1.45 1.54
p99 markup 1.11 1.20 1.35 1.57 1.57 1.90 1.78 2.24

aggregate productivity losses, %

gross output 2.99 3.19 3.32 3.81
value-added 5.55 6.85 8.89 12.52
value-added, M = 1 5.45 6.02 6.51 7.74

Cost-weighted steady state distribution of firm-level markups µit(s) and sector-level markups µt(s) and the implied aggregate
productivity losses for our oligopoly model. Gross output aggregate productivity loss is (Z − Z∗)/Z∗ × 100, and similarly for
the value-added aggregate productivity loss. To isolate the effect of misallocation on value-added aggregate productivity we also
report the value-added aggregate productivity loss with the same amount of markup dispersion but holdingM = 1 to eliminate
the distortion between value-added and materials, see text for details.

Results. Table 6 reports the cost-weighted steady-state distribution of firm-level markups

µit(s) and sector-level markups µt(s) for four levels of the aggregate markupM. The distri-

bution of sector-level markups alone is as dispersed as the unconditional markup distribution

in our benchmark model with monopolistic competition calibrated to the same aggregate

markupM (for which sectors are identical).29 For brevity we focus on the case ofM = 1.15.

The unconditional distribution of markups in the oligopoly model is considerably more dis-

persed than in our benchmark, especially in the upper tail. The gross output losses from

misallocation are 3.19%, up from 0.97% in the benchmark.

As reported in Table 7, in many respects the oligopoly model implies similar long-run

changes in economic activity as the benchmark model calibrated to the sameM. For example,

for M = 1.15 our benchmark model implies an output increase of 59.6%, consumption

increase of 44.5%, and employment increase of 18.0%. For M = 1.15 the oligopoly model

implies an output increase of 55.9%, consumption increase of 39.9%, and employment increase

of 14.9%. One notable difference however is that in our oligopoly model the initial distorted

29This amount of dispersion in sector-level markups is however less costly, because of the low elasticity of
substitution η between sectors. The amount of markup dispersion within sectors is more important.
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Table 7: Implications of Alternative Policies, Oligopoly

steady state comparisons, %

Y C L N K Z welfare, %

oligopoly, M = 1.05

efficient 20.1 15.9 4.8 −29.5 30.3 1.8 8.71
uniform subsidy 14.2 9.4 6.0 3.7 23.1 0.1 0.58
size-dependent subsidy 5.3 6.1 −1.1 −31.4 6.1 1.7 7.97
entry subsidy −2.0 −2.4 −1.1 −28.9 −2.5 −1.2 0.50

oligopoly, M = 1.15

efficient 55.9 39.9 14.9 −10.5 94.0 1.9 14.66
uniform subsidy 50.5 34.4 17.0 9.8 86.6 1.1 5.14
size-dependent subsidy 4.1 4.4 −1.8 −18.4 4.5 0.8 8.70
entry subsidy −2.1 −2.5 −1.0 −8.7 −2.7 −1.1 0.12

oligopoly, M = 1.25

efficient 112.6 79.0 25.3 −1.7 206.6 3.1 26.76
uniform subsidy 108.4 75.2 28.4 7.9 201.1 3.0 15.20
size-dependent subsidy 3.0 3.0 −2.4 −14.3 3.1 0.2 9.34
entry subsidy 0.9 1.0 0.4 1.9 1.2 0.4 0.01

oligopoly, M = 1.35

efficient 204.0 142.7 35.3 3.6 412.1 5.0 48.63
uniform subsidy 201.8 141.0 39.6 20.3 411.9 5.6 32.38
size-dependent subsidy 2.8 2.7 −3.1 −12.7 2.7 −0.1 11.28
entry subsidy 8.3 9.4 3.4 11.1 11.2 3.2 0.44

The first six columns report the percentage change from the initial distorted steady state with to the new steady state. The
last column reports the consumption equivalent welfare gains (including transitional dynamics). The alternative policies are
(i): the efficient allocation, where all markups are removed, (ii) a uniform subsidy that eliminates the aggregate markup, (iii)
size-dependent subsidies that eliminate misallocation and the entry distortion, and (iv) the optimal entry subsidy (or tax).
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steady state often features too many firms, for M = 1.15 the efficient steady state involves

reducing the average number of firms N by about 10.5%. In any case, because of the larger

amount of misallocation, the oligopoly model implies substantially larger costs of markups,

14.66% in consumption-equivalent terms, up from 8.67% for our benchmark. The gains from

size-dependent subsidies that eliminate misallocation and the entry distortion are 8.70% for

the oligopoly model, up from 2.87% for our benchmark. The gains from a uniform subsidy

that eliminates the aggregate markup distortion are similar to our benchmark, 5.14% down

slightly from 5.90%, but are correspondingly a smaller share of the total. Again, the gains

from the optimal entry subsidy are much, much smaller than the gains from other policies.30

There are two important caveats regarding these results. First, in the oligopoly model,

subsidies to eliminate misallocation would have to be both sector- and size-dependent, as

opposed to just size-dependent as they are in our benchmark model with monopolistic com-

petition. Second, the losses from misallocation may be lower if entry could be directed to

specific sectors. It remains an open question and an important direction for future research

to assess how much misallocation would be reduced if firms could direct entry.

7 Conclusion

We study the welfare costs of product market distortions in a dynamic model with hetero-

geneous firms and endogenously variable markups. Our model encompasses several popular

market structures and we provide aggregation results showing how the macro implications of

micro-level markup heterogeneity can be summarized by a few key statistics. We calibrate

our model to match levels of sales concentration and the firm-level relationship between la-

bor shares and market shares observed in 6-digit US Census of Manufactures data. We find

that the welfare costs of markups can be large. Depending on the market structure and as-

sumed level of the aggregate markup, the representative consumer can gain as much as 50%

in consumption-equivalent terms if all markup distortions are eliminated, once transitional

dynamics are taken into account.

In our model markups reduce welfare because the aggregate markup distortion acts like

a uniform output tax, reducing employment and investment by all firms, because markup

variation across firms causes misallocation of factors of production, and because there is

an inefficient rate of entry due to the misalignment between private and social incentives

to create new firms. Across all specifications, we robustly find that the aggregate markup

and misallocation channels account for the bulk of the costs of markups and that the entry

channel is much less important.

Although we focus on the normative side of our model, our results also have clear empirical

30Since the initial steady state has too many firms, the optimal entry subsidy is a tax.
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implications. One simple but important finding is that the overall level of markups is best

measured as a cost-weighted average of firm-level markups. This is the relevant ‘wedge’ in

aggregate employment and investment decisions. By contrast a sales-weighted average of firm-

level markups, as used in the empirical literature, overstates the rise in the overall level of

market power. In addition, our results provide two reasons to be skeptical of explanations for

the simultaneous rise in concentration and markups that focus on increasing barriers to entry.

First, in our model increasing barriers to entry reduce concentration, because the resulting

lack of competition makes it easier for small firms to survive. Second, in our model changes

in entry have negligible effects on the overall level of markups because entry is associated

with a reallocation of production towards high productivity, high markup firms.

To keep our model tractable enough that we can aggregate cross-sectional outcomes and

study transitional dynamics for a broad range of alternative market structures, we have

abstracted from a number of considerations that might play an important role in the devel-

opment of a more complete account of the macroeconomic implications of product market

distortions. First, while markups in our model are a return to sunk investments, there are no

positive spillovers from such investment to the stock of knowledge in the economy at large and

hence no implications for endogenous growth. But as emphasized by Atkeson, Burstein and

Chatzikonstantinou (2019), in the endogenous growth models they survey, a higher markup

acts like a uniform subsidy to innovation and is welfare-improving, the quantitative details

depending sensitively on the specification of the technology for research. In principle, these

effects could be large. That said, in endogenous growth models with variable markups, such

as Peters (2020), the interactions between entry, aggregate innovation and misallocation are

more subtle with the overall effects on growth ambiguous. An important challenge for fu-

ture work in this area is to provide detailed evidence on technologies for research and the

magnitudes of spillovers that can be used to refine such models to help quantify the relative

importance of these growth effects and the level effects of markups emphasized in this paper.

Second, we have made the assumption, standard in the literature, that the underlying

sources of firm size differences are fundamental differences in productivity or quality. Be-

cause of this, large firms with high markups represent a lost opportunity — they should be

even larger, not smaller, but charge lower prices. But if large firms are large not because

they are more productive or because their products are higher quality but instead because

they receive special tax breaks, or have political connections that help them evade antitrust

actions or other forms of regulation, then such firms may well be too large, not too small.

Another important challenge for future work in this area is to build models that blend polit-

ical connections, as in Akcigit, Baslandze and Lotti (2018), with endogenous product market

distortions so that we can quantitatively evaluate size-dependent policy interventions when

both fundamental and non-fundamental sources of firm size are operative.

Finally, to keep the analysis focused, we have abstracted from distortionary tax wedges
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and frictions in factor markets (e.g., monopsony power) that affect aggregate employment

and capital accumulation. For standard second best reasons, such distortions may either

amplify or mitigate the costs of product market distortions. Quantifying the interactions

between these different types of distortions also seems a natural topic for ongoing research.

46



Appendix

A Cost-weighted vs. sales-weighted average markups

In this appendix we derive an exact relationship between a cost-weighted average markup M and a sales-
weighted average markup M̃. The key result is

M̃ −M
M

= Var[µ̂i]

where Var[µ̂i] is a measure of the cross-sectional dispersion in the idiosyncratic component in markups,
µ̂i := µi/M. This derivation makes no assumptions about demand or market structure but makes one key
assumption about technology, specifically, that all firms within a given industry have the same cost elasticity.

Notation. Consider an industry with i = 1, 2, . . . , n firms. Let pi, yi, µi and ci denote respectively a firm’s
price, output, markup, and total variable costs.

Cost elasticity assumption. Let ϑ > 0 denote a firm’s cost elasticity, that is, the elasticity of total
variable costs with respect to output

ϑ :=
∂ log c

∂ log y
=
∂c

∂y

y

c
=

marginal cost

average cost
(A1)

Our key assumption is that the cost elasticity ϑ is common to all firms within a given industry, ϑi = ϑ. In
other words, all firms within a given industry have the same returns to scale, but this may be either increasing,
constant, or decreasing at the industry level. Marginal costs are then given by ϑci/yi. Importantly we do
not put any restrictions on marginal costs, these can vary arbitrarily across firms within the industry.

Aggregate markup. Given the assumption that all firms within a given industry have the same cost
elasticity ϑ, it is straightforward to show that the industry aggregate markup, that is, the ratio of industry
price to industry marginal cost, is given by a cost-weighted average of firm-level markups (equivalently, a
sales-weighted harmonic average). Following the same steps as in the main text, since prices pi are a markup
µi over marginal cost ϑci/yi we have revenues piyi = ϑµici so if we are to write M as the ‘wedge’ between
industry revenue PY :=

∑
i piyi and industry costs ϑ

∑
i ci (i.e., so that M is the ratio of the industry price

level to industry marginal costs), then

M =

n∑
i=1

µi ωi, ωi :=
ci∑
i ci

(A2)

where in slight abuse of notation we now use ωi to denote the cost-weights. Notice that this derivation makes
no assumptions about the demand system or market structure that generates the markups µi.

Relationship between cost-weighted and sales-weighted averages. By contrast, the applied litera-
ture on markups has emphasized sales-weighted averages, which can be written

M̃ =

n∑
i=1

µi ω̃i, ω̃i :=
piyi∑
i piyi

(A3)

We will now show that the sales-weighted average M̃ can be decomposed into the cost-weighted average M
plus a term that reflects the cross-sectional dispersion in markups.

Let E[·] denote averages with respect to the cost weights so that M = E[µi]. Then we can write the
sales-weighted average as

M̃ =

n∑
i=1

µi ω̃i =

n∑
i=1

µi
ω̃i
ωi
ωi = E

[
µi
ω̃i
ωi

]
(A4)
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Figure A1: Cost-Weighted vs. Sales-Weighted Average Markups, Compustat
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The sales-weighted average M̃ of firm-level markups in Compustat data, as in De Loecker, Eeckhout and Unger (2020), and the
cost-weighted average of firm-level markups M. The former is higher and has increased by a larger amount. The proportional
difference between the two averages reflects the cross-sectional dispersion in markups, which has been increasing.

Expanding the expectation of the product into the covariance plus the product of the expectations then gives

M̃ = E
[
µi
ω̃i
ωi

]
= Cov

[
µi ,

ω̃i
ωi

]
+ E

[
µi
]
E
[ ω̃i
ωi

]
= Cov

[
µi ,

ω̃i
ωi

]
+M (A5)

since M = E[µi] and E[ ω̃iωi ] =
∑
i ω̃i = 1. In short, the absolute difference between the sales-weighted and

cost-weighted average markups is given by the covariance of the markups µi and the relative weights ω̃i/ωi.

But under the assumption of a common cost elasticity ϑ the relative weights are proportional to the markups
themselves

ω̃i
ωi

=
piyi
ci

∑
i ci∑
i piyi

=
µiϑ

ci
yi
yi

ci

∑
i ci∑
i piyi

=
µi
M

(A6)

where the last equality follows becauseM is the ‘wedge’ between industry revenue
∑
i piyi and industry costs

ϑ
∑
i ci. In short, we can write

Cov
[
µi ,

ω̃i
ωi

]
= Cov

[
µi , µi

1

M

]
=

1

M
Var[µi] (A7)

And hence our key decomposition can be written

M̃ =M+
1

M
Var[µi] (A8)

That is, the sales-weighted average can be expressed as the cost-weighted average plus a term that reflects
the cross-sectional dispersion in markups.
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Multiplicative decomposition. A slightly more intuitive version of this decomposition obtains if we
decompose the markups µi multiplicatively into the commonM component and an idiosyncratic component
µ̂i with mean normalized to one

µ̂i := µi/M (A9)

Then Var[µi] =M2Var[µ̂i] and we can write

M̃ −M
M

= Var[µ̂i] (A10)

That is, the percentage difference between the sales-weighted average and the cost-weighted average is given
by the cross-sectional variance of the idiosyncratic component µ̂i.

Hence M̃ ≥ M with equality only if there is no markup dispersion. The statistic M̃ can rise over time
either due to increasingM or increasing Var[µ̂i] or both. The statistic M̃ can be rising even ifM is constant.
Indeed M̃ can be rising even if M is falling if the increase in dispersion Var[µ̂i] is large enough.

Compustat example. To get a quantitative sense of the difference between the cost-weighted averageM
and the sales-weighted average M̃, we compute these statistics using publicly available Compustat data for
the US economy. We follow the approach of De Loecker, Eeckhout and Unger (2020) using the ratio of sales
to the cost of goods sold, scaled by estimates (at the 2-digit industry level) of the output elasticity of the
production function from Karabarbounis and Neiman (2019). We show the results in Figure A1.31 Clearly
the sales weighted average M̃ is higher and has risen by substantially more than the cost-weighted average
M. The additional increase in M̃ reflects the increasing dispersion of markups.

Although researchers may not always have reliable data on total variable costs, under the assumption that
all firms within a given industry share the same cost elasticity ϑ, the cost-weighted arithmetic average is
equivalent to the sales-weighted harmonic average, which can of course be computed if the sales-weighted
arithmetic average can.

B Census data and markup estimates

We use data from the US Census of Manufactures from 1972 to 2012. We focus on the Census of Manufactures
for two reasons: (i) it has higher-quality input data relative to other sectors, such as Services, and (ii) the
vast majority of manufacturing goods are easily transportable and not limited to local markets.

Framework. We now spell out the assumptions we need to infer firm-level markups from this Census data.
Suppose firms face an inverse demand function and let σit(s) and µit(s) denote the implied demand elasticity
and markup

σit(s) := −∂ log yit(s)

∂ log pit(s)
, µit(s) :=

σit(s)

σit(s)− 1
(B1)

Suppose firms have production function

yit(s) = Fs(kit(s), lit(s), xit(s)) (B2)

and let αkit(s), α
l
it(s), α

x
it(s) denote the elasticities of output with respect to capital, labor, and materials

αkit(s) :=
∂ log yit(s)

∂ log kit(s)
, αlit(s) :=

∂ log yit(s)

∂ log lit(s)
, αxit(s) :=

∂ log yit(s)

∂ log xit(s)
(B3)

Taking factor prices as given, suppose kit(s), lit(s), xit(s) are chosen to maximize profits

pit(s)yit(s)−Rtkit(s)−Wtlit(s)− xit(s) (B4)

31See also Figure II, Panel B in De Loecker, Eeckhout and Unger (2020).
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subject to the inverse demand curve and production function given above. The key first order conditions for
this problem can be written

Rtkit(s) = αkit(s)
pit(s)yit(s)

µit(s)
(B5)

Wtlit(s) = αlit(s)
pit(s)yit(s)

µit(s)
(B6)

xit(s) = αxit(s)
pit(s)yit(s)

µit(s)
(B7)

which implies, for example,

Wtlit(s)

Rtkit(s) +Wtlit(s) + xit(s)
=

αlit(s)

αkit(s) + αlit(s) + αxit(s)
(B8)

To infer markups from these conditions using data from the Census of Manufactures we impose two
additional assumptions: (i) that each firm i within a given sector s has the same factor elasticities, i.e., for
each factor j = k, l, x the elasticities αjit(s) = αjt (s) for all i in s, and (ii) the degree of returns to scale in

each sector is the same, RTS :=
∑
j α

j
t (s) for all s. The Census gives us the value of revenue pit(s)yit(s)

and the wage bill Wtlit(s) for each firm i in each 6-digit NAICS sector s. Thus if we are equipped with an
estimate of the elasticity of output with respect to labor, α̂lt(s) our estimated markups are

µ̂it(s) =
pit(s)yit(s)

Wtlit(s)
× α̂lt(s) (B9)

Multi-establishment firms. In practice, we begin with the value of shipments peit(s)yeit(s) and total
salaries/wages Wtleit(s) for each establishment e of firm i in each 6-digit NAICS sector s. In the case of a
single-establishment firm i in sector s, we have

µit(s) = µeit(s) =
peit(s)yeit(s)

Wtleit(s)
× αlt(s) (B10)

where αlt(s) is the elasticity of output with respect to labor in sector s, as discussed above. For multi-
establishment firms we aggregate over the stablishments e of firm i to get

µit(s) = αlt(s)
∑
e∈i

µeit(s)
Wtleit(s)∑
e′∈iWtle′it(s)

(B11)

Output elasticities. The empirical literature has proposed various strategies for recovering the output
elasticities αlt(s) specific to sector s. In principle, one could estimate sector-specific production functions to
recover these elasticities. However, recently Bond, Hashemi, Kaplan and Zoch (2021) have shown that in the
presence of variable markups it is not possible to consistently estimate output elasticities when only revenue
data is available. Given this, we follow an alternative approach, more in the spirit of growth accounting,
where we use the firm’s cost minimization conditions to write, for each establishment e and firm i

αlt(s) =
Wtleit(s)

Wtleit(s) +Rtkeit(s) + xeit(s)
×RTS (B12)

Because of measurement error at the establishment level, we take averages within sector s for some given RTS.
Following Foster, Grim and Haltiwanger (2016), we take the cost-weighted average of labor input expenditure
shares of establishments within each sector s. This provides us with an estimate of αlt(s) for each 6-digit
NAICS sector s in each Census year t. For our benchmark results we assume constant returns to scale, RTS
= 1. We discuss the sensitivity of our results to the RTS in Appendix C.
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Markup regression specification. The key to our calibration of the benchmark model with Kimball
demand is the cross-sectional relationship between markups and market shares within a given sector. To
see this relationship precisely, consider a version of our model with sector-specific Kimball aggregators with
inverse demand curves of the form

pit(s) = Υ′s(qit(s))γi(s)dt(s), Υ′s(q) =
σ̄(s)− 1

σ̄(s)
exp

(1− qε(s)/σ̄(s)

ε(s)

)
(B13)

where dt(s) is the Kimball demand index, common to all firms i in sector s. Relative to our benchmark
model, this more general setting allows for time-invariant firm-specific demand shifters γi(s) and sector-
specific elasticity parameters ε(s), σ̄(s). Market shares are ωit(s) = pit(s)qit(s) so the log market share can
be written

logωit(s) = log qit(s) +
1− qit(s)ε(s)/σ̄(s)

ε(s)
+ log

(
γi(s)dt(s)

σ̄(s)− 1

σ̄(s)

)
(B14)

With Kimball demand the markup µit(s) is related to relative size qit(s) according to

1

µit(s)
= 1− 1

σ̄(s)
qit(s)

ε(s)/σ̄(s) (B15)

We can then eliminate qit(s) between equations (B14)-(B15) and collect terms to get

1

µit(s)
+ log

(
1− 1

µit(s)

)
= a(s) + ai(s) + at(s) + b(s) logωit(s)

the same as (59) above, with fixed effects

a(s) =
σ̄(s)− 1

σ̄(s)
− log σ̄(s)− ε(s)

σ̄(s)
log
( σ̄(s)− 1

σ̄(s)

)
(B16)

ai(s) = − ε(s)
σ̄(s)

log γi(s) (B17)

at(s) = − ε(s)
σ̄(s)

log dt(s) (B18)

and slope coefficient

b(s) =
ε(s)

σ̄(s)
(B19)

To summarize, the model then tells us that the superelasticity is pinned down by the strength of the covaria-
tion between (transformed) markups and market shares after having controlled for firm- and sector-time fixed
effects. The firm effects control for time-invariant firm-specific demand, γi(s). The sector-time effects control
for sector-specifc implications of shocks that shift the Kimball demand index dt(s). For our benchmark spec-
ification we take the model at face value and impose a common super-elasticity b(s) = b for all sectors s. We
discuss alternative estimates that relax the assumption of a common super-elasticity and estimate different
b(s) for different subsamples of sectors in Appendix C.

Outliers. We trim outliers by winsorizing establishment-level markups µeit(s) at the top and bottom 5%
of each Census year.

Interpreting markup estimates. In our view, these markup estimates should be interpreted with some
caution, both because of the issue of disentangling markups from output elasticities discussed above and
because of the possibility that the firms’ cost-minimization problem is misspecified — in which case, estimated
markups will confound true markups with any other distortionary ‘wedge’ between prices and marginal cost,
e.g., implicit or explicit input or revenue taxes, factor-adjustment costs, or price rigidities, etc.

Still, if one is prepared to take our estimated firm-level markups from the Census at face value, assuming
away any other distortions etc, then one can compute the aggregate markup by taking the appropriate
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Figure B1: Aggregate Markup from Census Data
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Cost-weighted aggregate markup M computed from the firm-level markups µit(s) constructed using micro data from the US
Census of Manufactures from 1972 to 2012, as discussed in the text, for different values of the returns to scale (RTS). Our
benchmark model assumes constant returns to scale, RTS = 1, but our results are robust to lower returns to scale.

weighted average. We report the results of this exercise in Figure B1. This figure shows the evolution of
the aggregate markup (cost-weighted average markup) for two cases, constant returns to scale (RTS = 1.0)
and decreasing returns to scale (RTS = 0.9) for each Census year. For RTS = 1.0, the aggregate markup
ranges from 1.20 in 1972 to a peak of 1.40 in 2002 before declining to about 1.33 in 2012. For RTS = 0.9
the aggregate markup is proportionately lower, ranging from 1.08 in 1972, peaking at 1.25 in 2002 before
declining to about 1.20 in 2012.
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